AI Article Synopsis

  • * Higher environmental temperatures during the spill increased fish metabolic demands, which compounded the negative effects of oil exposure on their oxygen transport and recovery from exercise.
  • * Red drum fish showed varying responses to oil and temperature; those acclimated to higher temperatures had decreased exercise recovery and oxygen thresholds, suggesting serious implications for their survival and fitness in a changing climate and ongoing oil exploration.

Article Abstract

The 2010 Deepwater Horizon (DWH) crude oil spill, among the largest environmental disasters in U.S. history, affected numerous economically important fishes. Exposure to crude oil can lead to reduced cardiac function, limiting oxygen transport, ATP production, and aerobic performance. However, crude oil exposure is not the only stressor that affects aerobic performance, and increasing environmental temperatures are known to significantly increase metabolic demands in fishes. As the DWH spill was active during warm summer months in the Gulf of Mexico, it is important to understand the combined effects of oil and temperature on a suite of metabolic parameters. Therefore, we investigated the effects of 24h crude oil exposure on the aerobic metabolism and hypoxia tolerance of red drum (Sciaenops ocellatus) following 3 week chronic exposure to four ecologically relevant temperatures (18 °C, 22 °C, 25 °C, 28 °C). Our results show that individuals acclimated to higher temperatures had significantly higher standard metabolic rate than individuals at lower temperatures, which resulted in significantly decreased critical oxygen threshold and reduced recovery from exercise. As predicted, crude oil exposure resulted in lower maximum metabolic rates (MMR) across the temperature range, and a significantly reduced ability to recover from exercise. The lowest temperature acclimation showed the smallest effect of oil on MMR, while the highest temperature showed the smallest effect on exercise recovery. Reduced respiratory performance and hypoxia tolerance are likely to have meaningful impacts on the fitness of red drum, especially with climate-induced temperature increases and continued oil exploration in the Gulf of Mexico.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2021.105773DOI Listing

Publication Analysis

Top Keywords

crude oil
20
red drum
12
oil exposure
12
°c °c
12
drum sciaenops
8
sciaenops ocellatus
8
oil
8
aerobic performance
8
gulf mexico
8
hypoxia tolerance
8

Similar Publications

Low-temperature direct ammonia fuel cell (DAFC) stands out as a more secure technology than the hydrogen fuel cell system, while there is still a lack of elegant bottom-up synthesis procedures for efficient ammonia oxidation reaction (AOR) electrocatalysts. The widely accepted d-band center, even with consideration of the d-band width, usually fails to describe variations in AOR reactivity in many practical conditions, and a more accurate activity descriptor is necessary for a less empirical synthesis path. Herein, the upper d-band edge, ε, derived from the d-band model, is identified as an effective descriptor for accurately establishing the descriptor-activity relationship.

View Article and Find Full Text PDF

Organic hydrides can store hydrogen via chemical bonding under ambient conditions, enabling the safe storage and transportation of hydrogen gas using the same infrastructure for gasoline. However, in previous research, most organic hydrides have been produced from petroleum, and therefore replacing them with earth-abundant or renewable compounds is essential to ensure sustainability. This study demonstrates dihydrolevoglucosenone (CyreneTM), which is a biodegradable liquid ketone that is produced directly from biomass without pretreatments on an industrial scale, as a new renewable organic hydride.

View Article and Find Full Text PDF

The design and synthesis of nonlinear optical (NLO) materials are rapidly growing fields in optoelectronics. Considering the high demand for newly designed materials with superior optoelectronic characteristics, we investigated the doping process of Group-IIIA elements (namely, B, Al and Ga) onto alkali metal (AM = Li, Na and K)-supported COLi (AM@COLi) complexes to enhance their NLO response. The AM-COLi complexes retained their structural features following interaction with the Group-IIIA elements.

View Article and Find Full Text PDF

Produced water management is a significant challenge for the oil and gas industry. Due to the large volumes and complex composition of this water, treatment requires special attention, resulting in high costs for companies in the sector. Naphthenic acids, known for their recalcitrance, add a layer of complexity to the treatment process.

View Article and Find Full Text PDF

Achieving Superior Thermoelectric Performance in Methoxy-Functionalized MXenes: The Role of Organic Functionalization.

ACS Appl Mater Interfaces

January 2025

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.

Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!