Examining neural etiologic factors'role in the decline of neuromuscular function with aging is essential to our understanding of the mechanisms underlying sarcopenia, the age-dependent decline in muscle mass, force and power. Innervation of the skeletal muscle by both motor and sympathetic axons has been established, igniting interest in determining how the sympathetic nervous system (SNS) affect skeletal muscle composition and function throughout the lifetime. Selective expression of the heart and neural crest derivative 2 gene in peripheral SNs increases muscle mass and force regulating skeletal muscle sympathetic and motor innervation; improving acetylcholine receptor stability and NMJ transmission; preventing inflammation and myofibrillar protein degradation; increasing autophagy; and probably enhancing protein synthesis. Elucidating the role of central SNs will help to define the coordinated response of the visceral and neuromuscular system to physiological and pathological challenges across ages. This review discusses the following questions: (1) Does the SNS regulate skeletal muscle motor innervation? (2) Does the SNS regulate presynaptic and postsynaptic neuromuscular junction (NMJ) structure and function? (3) Does sympathetic neuron (SN) regulation of NMJ transmission decline with aging? (4) Does maintenance of SNs attenuate aging sarcopenia? and (5) Do central SN group relays influence sympathetic and motor muscle innervation?
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049122 | PMC |
http://dx.doi.org/10.1016/j.arr.2021.101305 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!