An inexpensive anaerobic chamber for the genetic manipulation of strictly anaerobic bacteria.

Anaerobe

Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China. Electronic address:

Published: June 2021

AI Article Synopsis

Article Abstract

Strictly anaerobic bacteria are important to both human health and industrial usage. These bacteria are sensitive to oxygen, therefore, it is preferable to manipulate these microbes in an anaerobic chamber. However, commercial anaerobic chambers (CACs) are expensive, making them less accessible to scientists with a limited budget, especially to those in developing countries. The high price of commercial chambers has hindered, at least partially, the progress of research on anaerobes in developing countries. In the research presented here, we developed an inexpensive and reliable anaerobic chamber and successfully achieved routine maintenance of eleven strictly anaerobic bacterial strains. Furthermore, genetic manipulation examples have been set for both Clostridioidesdifficile 630 and Clostridiumbeijerinckii NCIMB 8052 strains to validate that the chamber could applied to advanced genetic engineering of strictly anaerobes. C. difficile and C. beijerinckii were both genetically manipulated in this chamber, showing it's utility for the genetic engineering of anaerobes. Most importantly, the anaerobic chamber was 76% - 88% less expensive than a CACs and has similar functionality with regards to the cultivation and manipulation of strictly anaerobic bacteria. The anaerobic chamber described in this study will promote the research of anaerobes in developing counties and scientists who have limited research budgets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anaerobe.2021.102349DOI Listing

Publication Analysis

Top Keywords

anaerobic chamber
20
strictly anaerobic
16
anaerobic bacteria
12
anaerobic
9
genetic manipulation
8
manipulation strictly
8
scientists limited
8
developing countries
8
anaerobes developing
8
genetic engineering
8

Similar Publications

In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved.

View Article and Find Full Text PDF

Simultaneous biological nutrient removal (SBNR) using an anaerobic-anoxic-oxic phase is the key feature of advanced wastewater treatment plants (WWTPs). Removing ammonia, total nitrogen, and phosphorus concurrently with organic matter and suspended solids from wastewater is essential to meeting stringent effluent discharge standards via SBNR in WWTPs. More insight into the mechanisms of SBNR, i.

View Article and Find Full Text PDF

Elastic Recovery In-Die During Cyclic Loading of Solid Anaerobic Digestate.

Materials (Basel)

December 2024

Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka St. 28, 20-612 Lublin, Poland.

Anaerobic digestate represents a valuable organic by-product, with one of the main challenges being its enhanced utilization. Pelletization offers potential benefits by improving the digestate's storability, facilitating transport, and significantly expanding its application as a fertilizer or biofuel. Understanding the mechanisms of densification and their impact on the final product quality is essential and served as the inspiration for this research.

View Article and Find Full Text PDF

The Fusobacterium genus comprises Gram-negative, obligate anaerobic bacteria that typically reside in the periodontium of the oral cavity, gastrointestinal tract, and female genital tract. The association of Fusobacterial spp. with colorectal tumours is widely accepted, with further evidence that this pathogen may also be implicated in the development of other malignancies.

View Article and Find Full Text PDF

Enhanced propionate degradation and CO electromethanogenesis in an up-flow dual-chamber electrocatalytic anaerobic bioreactor (UF-DC-EAB): Leveraging DIET-mediated syntrophy for microbial stability.

Water Res

December 2024

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China. Electronic address:

Anaerobic digestion faces numerous challenges, including high CO content in biogas and volatile fatty acids (such as propionate) accumulation in digestate. To address these issues, an up-flow dual-chamber electrocatalytic anaerobic bioreactor (UF-DC-EAB) was developed to enhance propionate degradation through microbial symbiosis while improving biogas quality via CO electromethanogenesis. Under the extreme conditions with propionate as the primary carbon source at 6-h HRT, the UF-DC-EAB achieved a propionate removal efficiency of 72.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!