While details remain unclear, initiation of woven bone mineralization is believed to be mediated by collagen and potentially nucleated by bone sialoprotein (BSP). Interestingly, our recent publication showed that BSP and type XI collagen form complexes in mineralizing osteoblastic cultures. To learn more, we examined the protein composition of extracellular sites of de novo hydroxyapatite deposition which were enriched in BSP and Col11a1 containing an alternatively spliced "6b" exonal sequence. An alternate splice variant "6a" sequence was not similarly co-localized. BSP and Col11a1 co-purify upon ion-exchange chromatography or immunoprecipitation. Binding of the Col11a1 "6b" exonal sequence to bone sialoprotein was demonstrated with overlapping peptides. Peptide 3, containing three unique lysine-triplet sequences, displayed the greatest binding to osteoblastic cultures; peptides containing fewer lysine triplet motifs or derived from the "6a" exon yielded dramatically lower binding. Similar results were obtained with 6-carboxyfluorescein (FAM)-conjugated peptides and western blots containing extracts from osteoblastic cultures. Mass spectroscopic mapping demonstrated that FAM-peptide 3 bound to 90 kDa BSP and its 18 to 60 kDa fragments, as well as to 110 kDa nucleolin. In osteoblastic cultures, FAM-peptide 3 localized to biomineralization foci (site of BSP) and to nucleoli (site of nucleolin). In bone sections, biotin-labeled peptide 3 bound to sites of new bone formation which were co-labeled with anti-BSP antibodies. These results establish the fluorescent peptide 3 conjugate as the first nonantibody-based method to identify BSP on western blots and in/on cells. Further examination of the "6b" splice variant interactions will likely reveal new insights into bone mineralization during development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008188 | PMC |
http://dx.doi.org/10.1016/j.jbc.2021.100436 | DOI Listing |
PLoS One
December 2024
Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
Bacterial cellulose (BC) is a novel biocompatible polymeric biomaterial with a wide range of biomedical uses, like tissue engineering (TE) scaffolds, wound dressings, and drug delivery. Although BC lacks good cell adhesion due to limited functionality, its tunable surface chemistry still holds promise. Here, hydroxyapatite (HA) was incorporated into a citrate-modified BC (MBC) using the biomimetic synthesis in simulated body fluid (SBF).
View Article and Find Full Text PDFCytotechnology
February 2025
College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, 266109 China.
Osteoarthritis is a degenerative disease of cartilage, and exosome derived from mesenchymal stem cells (MSCs) are considered promising for treating inflammatory musculoskeletal disorders, although their mechanisms are not fully understood. This study aimed to investigate the effects of exosomes derived from canine bone marrow mesenchymal stem cells (cBMSCs-Exos) on the expression of inflammatory factors and genes related cartilage matrix metabolism in IL-1β-induced canine chondrocytes. Canine BMSCs were isolated and characterized for surface markers and trilineage differentiation.
View Article and Find Full Text PDFJ Oral Biol Craniofac Res
December 2024
Department of Prosthodontics, SRM Dental College, Bharathi Salai, Ramapuram, Chennai, 89, India.
Purpose: The study evaluated the influence of titanium discs, coated with polyacrylonitrile infused curcumin nanofibers on osteoblast activity.
Materials And Methods: The titanium discs were coated with polyacrylonitrile nanofibers infused with curcumin. MG-63 cell lines were utilized for cell culture to assess osteoblast morphology upon exposure of curcumin on titanium discs.
J Orthop Surg Res
December 2024
Department of Cardiology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong, 266000, China.
An improved understanding of the molecular actions underpinning bone marrow mesenchymal stem cell (BMSC) differentiation could highlight new therapeutics for osteoporosis (OP). Current evidence indicates that microRNAs (miRNAs) exert critical roles in many biological systems, including osteoblast differentiation. In this study, we examined miR-468-3p effects on osteogenic differentiation (OD).
View Article and Find Full Text PDFNitric Oxide
December 2024
Key Laboratory for Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China. Electronic address:
Background: Osteocytes are crucial for detecting mechanical stimuli and translating them into biochemical responses within the bone. The primary cilium, a cellular 'antenna,' plays a vital role in this process. However, there is a lack of direct correlation between cilium length changes and osteocyte mechanosensitivity changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!