Loss of mature D1 leads to compromised CP43 assembly in Arabidopsis thaliana.

BMC Plant Biol

State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.

Published: February 2021

Background: Photosystem II (PSII) is a highly conserved integral-membrane multi-subunit pigment-protein complex. The proteins, pigments, lipids, and ions in PSII need to be assembled precisely to ensure a proper PSII biogenesis. D1 is the main subunit of PSII core reaction center (RC), and is usually synthesized as a precursor D1. D1 maturation by the C-terminal processing protease CtpA is essential for PSII assembly. However, the detailed mechanism about how D1 maturation affects PSII assembly is not clearly elucidated so far. In this study, Arabidopsis thaliana CtpA mutant (atctpa: SALK_056011), which lacks the D1 mature process, was used to investigate the function of this process on PSII assembly in more details.

Results: Without the C-terminal processing of precursor D1, PSII assembly, including PSII monomer, dimer, especially PSII supercomplexes (PSII SCs), was largely compromised as reported previously. Western blotting following the BN-2D-SDS PAGE revealed that although the assembly of PSII core proteins D2, CP43 and CP47 was affected by the loss of D1 mature process, the incorporation of CP43 was affected the most, indicated by its most reduced assembly efficiency into PSII SCs. Furthermore, the slower growth of yeast cells which were co-transformed with pD1 and CP43, when compared with the ones co-transformed with mature D1 and CP43, approved the existence of D1 C-terminal tail hindered the interaction efficiency between D1 and CP43, indicating the physiological importance of D1 mature process on the PSII assembly and the healthy growth of the organisms.

Conclusions: The knockout Arabidopsis atctpa mutant is a good material to study the unexpected link between D1 maturation and PSII SCs assembly. The loss of D1 maturation mainly affects the incorporation of PSII core protein CP43, an inner antenna binding protein, which functions in the association of LHCII complexes to PSII dimers during the formation of PSII SCs. Our findings here provide detailed supports of the role of D1 maturation during PSII SCs assembly in higher plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896377PMC
http://dx.doi.org/10.1186/s12870-021-02888-9DOI Listing

Publication Analysis

Top Keywords

psii assembly
20
psii scs
20
psii
19
psii core
12
maturation psii
12
mature process
12
assembly
10
loss mature
8
arabidopsis thaliana
8
c-terminal processing
8

Similar Publications

Bio-inspired Catalyst-Modified Photocathode for Bias-Free Photoelectrochemical NADH Regeneration.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China.

Cofactors such as nicotinamide adenine dinucleotide (NADH) and its phosphorylated form (NADPH) play a crucial role in natural enzyme-catalyzed reactions for the synthesis of chemicals. However, the stoichiometric supply of NADH for artificial synthetic processes is uneconomical. Here, inspired by the process of cofactor NADPH regeneration in photosystem I (PSI), catalyst-modified photocathodes are constructed on the surface of polythiophene-based semiconductors (PTTH) via self-assembly for photoelectrochemical catalytic NADH regeneration.

View Article and Find Full Text PDF

Thylakoid membranes in chloroplasts and cyanobacteria harbor the multisubunit protein complexes that catalyze the light reactions of photosynthesis. In plant chloroplasts, the thylakoid membrane system comprises a highly organized network with several subcompartments that differ in composition and morphology: grana stacks, unstacked stromal lamellae, and grana margins at the interface between stacked and unstacked regions. The localization of components of the photosynthetic apparatus among these subcompartments has been well characterized.

View Article and Find Full Text PDF

Chlorophylls a and b (Chl a and b) are involved in light harvesting, photochemical reactions, and electron transfer reactions in plants and green algae. The core complexes of the photosystems (PSI and PSII) associate with Chl a, while the peripheral antenna complexes (LHCI and LHCII) bind Chls a and b. One of the final steps of Chl biosynthesis is the conversion of geranylgeranylated Chls (Chls) to phytylated Chls by geranylgeranyl reductase (GGR).

View Article and Find Full Text PDF

Protein assemblies in the chloroplast compartment.

Front Plant Sci

August 2024

Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.

Introduction: Equipped with a photosynthetic apparatus that uses the energy of solar radiation to fuel biosynthesis of organic compounds, chloroplasts are the metabolic factories of mature leaf cells. The first steps of energy conversion are catalyzed by a collection of protein complexes, which can dynamically interact with each other for optimizing metabolic efficiency under changing environmental conditions.

Materials And Methods: For a deeper insight into the organization of protein assemblies and their roles in chloroplast adaption to changing environmental conditions, an improved complexome profiling protocol employing a MS-cleavable cross-linker is used to stabilize labile protein assemblies during the organelle isolation procedure.

View Article and Find Full Text PDF

Structural basis for the distinct core-antenna assembly of cryptophyte photosystem II.

Nat Commun

August 2024

Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

Photosystem II (PSII) catalyzes the light-driven charge separation and water oxidation reactions of photosynthesis. Eukaryotic PSII core is usually associated with membrane-embedded light-harvesting antennae, which greatly increase the absorbance cross-section of the core. The peripheral antennae in different phototrophs vary considerably in protein composition and arrangement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!