In recent years, high resolution mass spectrometry (HRMS) combined with separation techniques has allowed comprehensive analysis of contaminants of emerging concern (CECs) as well as their metabolites and transformation products in various environmental samples via retrospective screening. However, to date, only a few suspect or non-targeted studies on the occurrence of CECs in marine aquatic system are reported. In this study, two methods, based on direct injection for seawater, or ultrasound-assisted extraction for sediments, followed by LC-Q-TOF-MS analysis were developed and applied for the simultaneous targeted and screening of contaminants in coastal samples (seawater, particulates and sediment) from Qatar collected in 2017-2018. Among the twenty-one target analytes (pesticides, PPCPs and a plasticizer), two compounds only were detected in seawater. Caffeine was detected in seawater samples at all sampling sites, and cotinine was detected in seawater samples collected in Umm Bab in 2018 and seawaters receiving stormwater. Traces of trimethoprim and carbamazepine were detected in sediment samples collected at four sites in 2017. These results suggest some inputs of domestic wastewater in the coastal waters in Qatar. In total, twelve molecular features were tentatively identified from suspect screening at concentration levels significantly higher than that in procedure blanks. The presence of four plasticizers and one pesticide were further confirmed using reference standards: diethyl phthalate (DEP), dibutyl phthalate (DBP), and tributyl phosphate (TBP) in seawater samples; bis(2-ethylhexyl) phthalate (DEHP) in sediment and particulate samples; and dinoterb in seawater after storm event and particulate samples. Overall, this study demonstrated the potential of high resolution LC-Q-TOF-MS/MS for combined targeted and non-targeted analyses of trace contaminants in marine systems over a broad range of log P values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.145043 | DOI Listing |
Curr Environ Health Rep
January 2025
School of Health Sciences, Purdue University, West-Lafayette, IN, 47906, USA.
Purpose Of Review: This review explores the use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence (XRF) for quantifying metals and metalloids in biological matrices such as hair, nails, blood, bone, and tissue. It provides a comprehensive overview of these methodologies, detailing their technological limitations, application scopes, and practical considerations for selection in both laboratory and field settings. By examining traditional and novel aspects of each method, this review aims to guide researchers and clinical practitioners in choosing the most suitable analytical tool based on their specific needs for sensitivity, precision, speed, and sample preparation.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Navigation and Shipping, Shandong Jiaotong University, Weihai, 264200, Shandong, China.
The laser-induced fluorescence technique has the advantage of fast and non-destructive detection and can be used to classify types of marine microplastics. However, spectral overlap poses a challenge for qualitative and quantitative analysis by conventional fluorescence spectroscopy. In this paper, a 405 nm excitation laser source was used to irradiate 4 types of microplastic samples with different concentrations, and a total of 1600 sets of fluorescence spectral data were obtained.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronic and Electrical Engineering, University of Manchester, Manchester M13 9PL, UK.
Frequency-domain electromagnetic induction (EMI) is routinely used to detect the presence of seawater due to the inherent electrical conductivity of the seawater. This approach is used to infer sea-ice thickness (SIT). A time-domain EMI sensor is presented, which demonstrates the potential for correlating the spectroscopic properties of the received signal with the distance to the sea surface.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland.
Tellurium, recognized as one of the technology-critical elements, should be considered as a xenobiotic. Its application, i.a.
View Article and Find Full Text PDFAnal Sci
January 2025
Estuary Research Center, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
A simple method for determining elemental sulfur in environmental water was developed and applied to seawater samples collected immediately after the occurrence of blue tides in Tokyo Bay. To investigate the concentration and extraction methods, artificial elemental sulfur was quantitatively produced by oxidizing a sulfide solution with an iodine solution, then used as a standard reagent in the experiments. To concentrate the elemental sulfur in the water sample, glass filter paper (GF/F) was used to filter and collect the elemental sulfur.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!