MITOCHONDRIA: Succinate dehydrogenase subunit B-associated phaeochromocytoma and paraganglioma.

Int J Biochem Cell Biol

Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands. Electronic address:

Published: May 2021

Phaeochromocytomas and paragangliomas are rare neuroendocrine tumours. So far, over 20 causative genes have been identified, of which the most frequent and strongest indicator for malignancies are mutations in succinate dehydrogenase subunit B. No curative therapy is available for patients with metastases resulting in poor prognosis. Therapy development has been hindered by lack of suitable model systems. The succinate dehydrogenase complex is located in the inner membrane of the mitochondria and plays a crucial role in the oxidative phosphorylation chain and the tricarboxylic acid-cycle. Succinate dehydrogenase deficiency results in accumulation of the oncometabolite succinate inducing hypoxia inducible factor stabilization, deoxyribonucleic acid and histone methylation inhibition, and impaired production of adenosine triphosphate. It remains unknown which combination of pathways and/or triggers are decisive for metastases development. In this review, the role of mitochondria in malignant succinate dehydrogenase subunit B-associated phaeochromocytomas and paragangliomas and implications for mitochondria as therapeutic target are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2021.105949DOI Listing

Publication Analysis

Top Keywords

succinate dehydrogenase
20
dehydrogenase subunit
12
subunit b-associated
8
phaeochromocytomas paragangliomas
8
dehydrogenase
5
succinate
5
mitochondria
4
mitochondria succinate
4
b-associated phaeochromocytoma
4
phaeochromocytoma paraganglioma
4

Similar Publications

Schizothoracine fishes in saltwater lakes of the Tibetan Plateau are important models for studying the evolution and uplift of the Tibetan Plateau. Examining their adaptation to the high-salt environment is interesting. In this study, we first assembled the RNA-Seq data of each tissue of , , and from Qinghai Lake, Selincuo Lake, and Namtso Lake, respectively, obtained by the group previously.

View Article and Find Full Text PDF

Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.

View Article and Find Full Text PDF

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

α-Ketoisocaproic Acid Disrupts Mitochondrial Bioenergetics in the Brain of Neonate Rats: Molecular Modeling Studies of α-ketoglutarate Dehydrogenase Subunits Inhibition.

Neurochem Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Brain accumulation of the branched-chain α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) occurs in maple syrup urine disease (MSUD), an inherited intoxicating metabolic disorder caused by defects of the branched-chain α-keto acid dehydrogenase complex. Patients commonly suffer life-threatening acute encephalopathy in the newborn period and develop chronic neurological sequelae of still undefined pathogenesis. Therefore, this work investigated the in vitro influence of pathological concentrations of KIC (5 mM), KMV (1 mM), and KIV (1 mM) on mitochondrial bioenergetics in the cerebral cortex of neonate (one-day-old) rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!