Correction of recessive dystrophic epidermolysis bullosa by homology-directed repair-mediated genome editing.

Mol Ther

Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain; Epithelial Biomedicine Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain. Electronic address:

Published: June 2021

Genome-editing technologies that enable the introduction of precise changes in DNA sequences have the potential to lead to a new class of treatments for genetic diseases. Epidermolysis bullosa (EB) is a group of rare genetic disorders characterized by extreme skin fragility. The recessive dystrophic subtype of EB (RDEB), which has one of the most severe phenotypes, is caused by mutations in COL7A1. In this study, we report a gene-editing approach for ex vivo homology-directed repair (HDR)-based gene correction that uses the CRISPR-Cas9 system delivered as a ribonucleoprotein (RNP) complex in combination with donor DNA templates delivered by adeno-associated viral vectors (AAVs). We demonstrate sufficient mutation correction frequencies to achieve therapeutic benefit in primary RDEB keratinocytes containing different COL7A1 mutations as well as efficient HDR-mediated COL7A1 modification in healthy cord blood-derived CD34 cells and mesenchymal stem cells (MSCs). These results are a proof of concept for HDR-mediated gene correction in different cell types with therapeutic potential for RDEB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178438PMC
http://dx.doi.org/10.1016/j.ymthe.2021.02.019DOI Listing

Publication Analysis

Top Keywords

recessive dystrophic
8
epidermolysis bullosa
8
gene correction
8
correction
4
correction recessive
4
dystrophic epidermolysis
4
bullosa homology-directed
4
homology-directed repair-mediated
4
repair-mediated genome
4
genome editing
4

Similar Publications

Recessive dystrophic epidermolysis bullosa (RDEB) is a genetic disorder due to pathogenic variants in the COL7A1 gene. In this study we determined the association between different categories of COL7A1 variants and clinical disease severity in 236 RDEB patients in North America. Published reports or in-silico predictions were used to assess the impact of pathogenic variants in COL7A1 on type VII collagen (C7) protein function.

View Article and Find Full Text PDF

Myotonia congenita is a hereditary, non-dystrophic skeletal muscle disorder associated with muscle stiffness due to delayed muscle relaxation after contraction. We review myotonia congenita in domesticated animals and humans and investigated suspected myotonia congenita in a flock of Merino sheep in Australia. In 2020, a property in New South Wales reported a four-year history of lambs that would fall on disturbance before rapidly recovering, with 13 affected sheep identified in 2020.

View Article and Find Full Text PDF

Advanced phasing techniques in congenital skin diseases.

J Dermatol

December 2024

Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.

Phasing, the process of determining which alleles at different loci on homologous chromosomes belong together on the same chromosome, is crucial in the diagnosis and management of autosomal recessive diseases. Advances in long-read sequencing technologies have significantly enhanced our ability to accurately determine haplotypes. This review discusses the application of low-coverage long-read sequencing, nanopore Cas9-guided long-read sequencing, and adaptive sampling in phasing, highlighting their utility in complex clinical scenarios.

View Article and Find Full Text PDF
Article Synopsis
  • Congenital titinopathies are inherited in an autosomal recessive pattern and primarily result from genetic variations in metatranscript (MTT)-only exons, leading to diverse clinical outcomes.
  • The study analyzed 20 patients with these variants, revealing severe congenital myopathy at birth along with a wide range of associated issues like muscular weakness and respiratory problems.
  • Findings underscore the importance of genotype-phenotype correlations, enhancing understanding of the genetic basis and molecular mechanisms behind these conditions.
View Article and Find Full Text PDF

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare and most often severe genodermatosis characterized by recurrent blistering and erosions of the skin and mucous membranes after minor trauma, leading to major local and systemic complications. RDEB is caused by loss-of-function mutations in COL7A1 encoding type VII collagen (C7), the main component of anchoring fibrils which form attachment structures stabilizing the cutaneous basement membrane zone. Most of the previously reported COL7A1 mutations are located in the coding or intronic regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!