The class Oligohymenophorea is one of the most diverse assemblage of ciliated protists, which are particularly important in fundamental biological studies including understanding the evolutionary relationships among the lineages. Phylogenetic relationships within the class remain largely elusive, especially within the subclass Peniculia, which contains the long-standing problematic taxa Urocentrum and Paranassula. In the present study, we sequenced the genomes and/or transcriptomes of six non-culturable oligohymenophoreans using single-cell sequencing techniques. Phylogenomic analysis was performed based on expanded taxon sampling of 85 taxa, including 157 nuclear genes encoding 36,953 amino acids. The results indicate that: (1) urocentrids form an independent branch that is sister to the clade formed by Scuticociliatia and Hymenostomatia, which, together with the morphological data, supports the establishment of a new subclass, Urocentria n. subcl., within Oligohymenophorea; (2) phylogenomic analysis and ortholog comparison reveal a close relationship between Paranassula and peniculines, providing corroborative evidence for removing Paranassula from Nassulida and elevating it as an order, Paranassulida, within the subclass Peniculia; (3) based on the phylogenomic analyses and morphological data, we hypothesize that Peritrichia is the earliest diverging clade within Oligohymenophorea while Scuticociliatia and Hymenostomatia share the most common ancestor, followed successively by Urocentria and Peniculia. In addition, stop codon analyses indicate that oligohymenophoreans widely use UGA as the stop codon, while UAR are reassigned to glutamate (peritrichs) or glutamine (others), supporting the evolutionary hypothesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2021.107112 | DOI Listing |
Environ Microbiol
January 2025
Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
The Canadian province of Alberta contains substantial oilsands reservoirs, consisting of bitumen, clay and sand. Extracting oil involves separating bitumen from inorganic particles using hot water and chemical diluents, resulting in liquid tailings waste with ecotoxicologically significant compounds. Ongoing efforts aim to reclaim tailings-affected areas, with protist colonisation serving as one assessment method of reclamation progress.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.
SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
s.s. belongs to the Cercidoideae subfamily, located at the base of the Leguminosae family.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China.
The Really Interesting New Gene (RING) E3 ubiquitin ligases represent the largest class of E3 ubiquitin ligases involved in protein degradation and play a pivotal role in plant growth, development, and environmental responses. Despite extensive studies in numerous plant species, the functions of RING E3 ligases in cotton remain largely unknown. In this study, we performed systematic identification, characterization, and expression analysis of genes in cotton.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!