Background: Previous studies described the presence of SARS-CoV-2 in outdoor air particulate matter (PM) in urban areas of northern Italy and USA. The city of Madrid was heavily affected by COVID-19 during March-June 2020. Also, this city usually displays high concentrations of PM under several atmospheric situations. This is mandatory to assess the presence of viral RNA in PM, as an indicator of epidemic recurrence. Our study was aimed at investigating the presence of SARS-CoV-2 RNA in outdoor air samples (on PM10, PM2.5 and PM1).
Methods: Six samples of PM10, PM2.5 and PM1 were collected between the May 4th and 22nd 2020 in Madrid, on quartz fiber filters by using MCV high volume samplers (30 m h flow) with three inlets (Digitel DHA-80) for sampling PM10, PM2.5 and PM1. RNA extraction and amplification was performed according to the protocol recently set by Setti et al.2020c in Italy. Up to three highly specific molecular marker genes (N1, N2, and RP) were used to test the presence of SARS-CoV-2 RNA.
Results: After RNA extraction and expression measurements of N1, N2 and RP genes from all the collected filters, no presence of SARS-CoV-2 RNA was observed. Control tests to exclude false positive results were successfully accomplished.
Conclusions: No presence of SARS-CoV-2 in quartz fiber filters samplers for PM10, PM2.5 and PM1 fractions was observed in our study carried out in Madrid during the month of May 2020. Nevertheless, the absence of viral genomes could be due to different factors including: limited social interactions and economic activities resulting in reduced circulation of the coronavirus, lower daily PM concentration in outdoor air, as well as to meteorological stability and higher temperature that characterize spring season. Further research should be carried out during winter, in presence of higher viral circulation and daily PM exceedances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888991 | PMC |
http://dx.doi.org/10.1016/j.envres.2021.110863 | DOI Listing |
Indian J Med Res
November 2024
Department of Obstetrics & Gynaecology, King George's Medical University, Lucknow, Uttar Pradesh, India.
Background & objectives The COVID-19 pandemic underscores the significance of vaccination in mitigating disease spread, with Covishield and Covaxin serving as pivotal vaccines in India. Breast milk, rich in vital antibodies like IgA and IgG, plays a crucial role in enhancing the immune defence of breastfeeding infants. However, limited research exists on the antibody responses in breast milk among individuals receiving single versus double doses of the COVID-19 vaccine.
View Article and Find Full Text PDFVaccine X
January 2025
Finlay Vaccine Institute, Av. 21 #19810, Atabey, Playa, Havana 11600, Cuba.
Background: The heterologous three-dose schedule of the protein subunit anti-COVID-19 SOBERANA®02 and SOBERANA® Plus vaccines has proved its safety, immunogenicity and efficacy in pediatric population, but durability of immunogenicity is not yet dilucidated. This study reports the safety and durability of the humoral and cellular responses in children and adolescents 5-7 months after receiving the heterologous vaccine schedule of SOBERANA® 02 and SOBERANA® Plus.
Methods: Children participating in a phase I/II clinical trial were followed-up for 5-7 months after the last dose.
Placenta
December 2024
Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA.
Introduction: The reported gross and histopathologic changes in the placenta associated with SARS-CoV-2 infection are heterogeneous. We sought to summarize placental histopathologic findings from pregnancies affected by SARS-CoV-2 infection according to timing of infection and symptom severity.
Methods: We conducted a retrospective cohort study of patients with SARS-CoV-2 infection during pregnancy who had deliveries at Mayo Clinic, Rochester, Minnesota, from April 2020 through June 2021.
Front Cell Infect Microbiol
December 2024
Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.
Clin Transl Immunology
December 2024
Division of Rheumatology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA.
Objectives: CD209L and its homologous protein CD209 act as alternative entry receptors for the SARS-CoV-2 virus and are highly expressed in the virally targeted tissues. We tested for the presence and clinical features of autoantibodies targeting these receptors and compared these with autoantibodies known to be associated with COVID-19.
Methods: Using banked samples ( = 118) from Johns Hopkins patients hospitalised with COVID-19, we defined autoantibodies against CD209 and CD209L by enzyme-linked immunosorbent assay (ELISA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!