Glycosaminoglycans Are Involved in the Adhesion of Candida albicans and Malassezia Species to Keratinocytes But Not to Dermal Fibroblasts.

Actas Dermosifiliogr (Engl Ed)

Instituto Universitario Fernández-Vega (IUFV), Universidad de Oviedo, Oviedo, Asturias, España; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Asturias, España. Electronic address:

Published: February 2021

Background And Objective: Superficial mycoses are some of the most common diseases worldwide. The usual culprits - yeasts belonging to the genera Malassezia and Candida - are commensal species in the skin that can cause opportunistic infections. We aimed to determine whether these yeasts use glycosaminoglycans (GAGs) as adhesion receptors to mediate binding to epithelial cells.

Material And Methods: In keratinocyte and dermal fibroblast cultures, we used rhodamine B and genistein to inhibit GAG synthesis to study the role these molecules play in the adhesion of Candida albicans (C. albicans) and Malassezia species to cells. We also analyzed GAG involvement by means of enzyme digestion, using specific lyases.

Results: Rhodamine B partially inhibited the adhesion of both fungi to keratinocytes but not to fibroblasts. Selective digestion of heparan sulfate enhanced the binding of Malassezia species to keratinocytes and of both fungi to fibroblasts. Chondroitin sulfate digestion decreased C. albicans adhesion to keratinocytes, but increased the adhesion of the filamentous forms of this species to fibroblasts.

Conclusions: Cell surface GAGs appear to play a role in the adhesion of C albicans and Malasezzia species to keratinocytes. In contrast, their adhesion to fibroblasts appears to be enhanced by GAG inhibition, suggesting that some other type of receptor is the mediator.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ad.2021.02.001DOI Listing

Publication Analysis

Top Keywords

malassezia species
12
species keratinocytes
12
adhesion
8
adhesion candida
8
candida albicans
8
albicans malassezia
8
species
6
albicans
5
keratinocytes
5
glycosaminoglycans involved
4

Similar Publications

We describe a novel Malassezia species named Malassezia polysorbatinonusus, isolated from a Japanese patient with seborrheic dermatitis. The internal transcribed spacer (ITS) region of the isolate (LSEM 4845) were only 94.7% identical to those of M.

View Article and Find Full Text PDF

Anti-furfurative comparison of Kesh Kanti-Herbal Shampoos and synthetic shampoos against Malassezia furfur for dandruff management.

AMB Express

January 2025

Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Near Bahadrabad, Haridwar, 249405, Uttarakhand, India.

Malassezia furfur is the primary etiological agent of dandruff (Pityriasis capitis). Although herbal shampoos are preferred for their natural, mild ingredients over synthetic counterparts, they are often perceived as less effective in managing flaky scalp conditions or furfuration causing dandruff. The study compares the antifungal efficacy of herbal and synthetic shampoos against M.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the relationship between skin oxylipins, which are bioactive lipids produced from fatty acids by skin microbes, and different microbial communities on the skin of children and adults.
  • Findings highlighted that Malassezia restricta, a type of skin fungus, has a positive impact on the production of a specific oxylipin (9,10-DiHOME) in adults, while showing a negative correlation with its precursor in children, indicating differences in skin chemistry across age groups.
  • The research suggests a complex communication system between skin microbes and host lipid metabolism that could have implications for skin health, emphasizing the need for further exploration of these interactions for potential therapeutic applications.
View Article and Find Full Text PDF

Lactams Exhibit Potent Antifungal Activity Against Monospecies and Multispecies Interkingdom Biofilms on a Novel Hydrogel Skin Model.

APMIS

January 2025

Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK.

Infections of intact and damaged skin barriers and keratin are frequently associated with complex biofilm communities containing bacteria and fungi, yet there are limited options for successful management. This study intended to focus on the utility of some novel proprietary lactam molecules, quorum sensing (QS)-derived halogenated furanones, which act to block the QS pathway, against key fungal pathogens of the skin (Candida albicans, Malassezia furfur and Microsporum gypseum). Moreover, we aimed to assess how these actives performed against complex interkingdom biofilms in a clinically relevant model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!