Increasing temperatures in the US Midwest are projected to reduce maize yields because warmer temperatures hasten reproductive development and, as a result, shorten the grain fill period. However, there is widespread expectation that farmers will mitigate projected yield losses by planting longer season hybrids that lengthen the grain fill period. Here, we ask: (a) how current hybrid maturity length relates to thermal availability of the local climate, and (b) if farmers are shifting to longer season hybrids in response to a warming climate. To address these questions, we used county-level Pioneer brand hybrid sales (Corteva Agriscience) across 17 years and 650 counties in 10 Midwest states (IA, IL, IN, MI, MN, MO, ND, OH, SD, and WI). Northern counties were shown to select hybrid maturities with growing degree day (GDD°C) requirements more closely related to the environmentally available GDD compared to central and southern counties. This measure, termed "thermal overlap," ranged from complete 106% in northern counties to a mere 63% in southern counties. The relationship between thermal overlap and latitude was fit using split-line regression and a breakpoint of 42.8°N was identified. Over the 17-years, hybrid maturities shortened across the majority of the Midwest with only a minority of counties lengthening in select northern and southern areas. The annual change in maturity ranged from -5.4 to 4.1 GDD year with a median of -0.9 GDD year . The shortening of hybrid maturity contrasts with widespread expectations of hybrid maturity aligning with magnitude of warming. Factors other than thermal availability appear to more strongly impact farmer decision-making such as the benefit of shorter maturity hybrids on grain drying costs, direct delivery to ethanol biorefineries, field operability, labor constraints, and crop genetics availability. Prediction of hybrid choice under future climate scenarios must include climatic factors, physiological-genetic attributes, socio-economic, and operational constraints.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15565DOI Listing

Publication Analysis

Top Keywords

hybrid maturity
12
grain fill
8
fill period
8
longer season
8
season hybrids
8
thermal availability
8
northern counties
8
hybrid maturities
8
southern counties
8
hybrid
7

Similar Publications

The genetic basis of type 1 red-flesh color development in apple () depends upon a particular allele of the gene. Interestingly, type 1 red-flesh apples are fully red after fruit set, but anthocyanin pigmentation in apple fruit cortex may decrease during fruit growth and maturation, leading to variable red patterning and intensities in the mature cortical flesh. We developed a histogram-based color analysis method to quantitatively estimate pigmentation patterns.

View Article and Find Full Text PDF

Background: The development of superior summer maize hybrids with high-yield potential and essential agronomic traits, such as resistance to lodging, is crucial for ensuring the sustainability of maize cultivation. However, the task of identifying and breeding genotypes that exhibit exceptional performance and stability across multiple environment conditions, while considering a wide range of traits, is challenging. Given the backdrop of global climate change, understanding which climate variables and soil properties most significantly impact environmental similarity is essential for selecting hybrids with improved adaptability to regions with diverse climatic and soil conditions.

View Article and Find Full Text PDF

Maize transcription factor ZmEREB167 negatively regulates starch accumulation and kernel size.

J Genet Genomics

January 2025

State Key Laboratory of Maize Bio-breeding, Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, Department of Plant Genetics and Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Beijing 100193, China. Electronic address:

Transcription factors play critical roles in the regulation of gene expression during maize kernel development. The maize endosperm is a large storage organ, accounting for nearly 90% of the dry weight of mature kernel, and is also the main place for starch storage. In this study, we identify an endosperm-specific EREB gene, ZmEREB167, which encodes a nucleus-localized EREB protein.

View Article and Find Full Text PDF

Natural variation in MdNAC5 contributes to fruit firmness and ripening divergence in apple.

Hortic Res

January 2025

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.

Fruit firmness is an important trait for characterizing the quality and value of apple. It also serves as an indicator of fruit maturity, as it is a complex trait regulated by multiple genes. Resequencing techniques can be employed to elucidate variations in such complex fruit traits.

View Article and Find Full Text PDF

Introduction: Human amniotic membrane (hAM) has a highly biocompatible natural scaffold that is abundant in several extracellular matrix (ECM) components, including but not limited to platelet-derived growth factor (PDGF), transforming growth factor (TGF), and fibroblast growth factor (FGF). In our study, we have focused on a mixture of hAM and demineralized bone matrix (DBM) as an allo-hybrid graft to deliver it into the site of bone defect to decrease bone remodeling time.

Methods: Allo-hybrid grafts were prepared by coating the jelly made of decellularized and lyophilized hAM (AMJ) on the surface of DBM and subsequently underwent in vitro studies, such as alkaline phosphatase activity, MTT assay, and SEM analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!