Nitrogen sources are all converted into ammonium/ia as a first step of assimilation. It is reasonable to expect that molecular components involved in the transport of ammonium/ia across biological membranes connect with the regulation of both nitrogen and central metabolism. We applied both genetic (i.e., Δamt mutation) and environmental treatments to a target biological system, the cyanobacterium Anabaena sp PCC 7120. The aim was to both perturb nitrogen metabolism and induce multiple inner nitrogen states, respectively, followed by targeted quantification of key proteins, metabolites and enzyme activities. The absence of AMT transporters triggered a substantial whole-system response, affecting enzyme activities and quantity of proteins and metabolites, spanning nitrogen and carbon metabolisms. Moreover, the Δamt strain displayed a molecular fingerprint indicating nitrogen deficiency even under nitrogen replete conditions. Contrasting with such dynamic adaptations was the striking near-complete lack of an externally measurable altered phenotype. We conclude that this species evolved a highly robust and adaptable molecular network to maintain homeostasis, resulting in substantial internal but minimal external perturbations. This analysis provides evidence for a potential role of AMT transporters in the regulatory/signalling network of nitrogen metabolism and the existence of a novel fourth regulatory mechanism controlling glutamine synthetase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.14034 | DOI Listing |
Appl Environ Microbiol
December 2024
Department of Life Sciences, Chalmers University of Technology, Gothenburg, Västra Götaland County, Sweden.
Unlabelled: Bioprospecting can uncover new yeast strains and species with interesting ecological characteristics and valuable biotechnological traits, such as the capacity to convert different carbon sources from industrial side and waste streams into bioproducts. In this study, we conducted untargeted yeast bioprospecting in tropical West Africa, collecting 1,996 isolates and determining their growth in 70 different environments. While the collection contains numerous isolates with the potential to assimilate several cost-effective and sustainable carbon and nitrogen sources, we focused on characterizing the 203 strains capable of growing on lactose, the main carbon source in the abundant side stream cheese whey from dairy industries.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China.
Selenium nanoparticles (SeNPs) can be absorbed by plants, thereby affecting plant physiological activity, regulating gene expression, and altering metabolite content. However, the molecular mechanisms by which exogenous selenium affects coll.et Hemsl plant secondary metabolites remain unclear.
View Article and Find Full Text PDFJ Res Med Sci
October 2024
Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
Background: Diabetic retinopathy (DR) is one of the complications of diabetes. This study was conducted to investigate the effect of curcumin-piperine on laboratory factors and macular vascular in DR.
Materials And Methods: The present study was a randomized, placebo-controlled, double-blind, parallel-arm clinical trial that was conducted on 60 patients with DR aged 30-65 years.
Int J Med Sci
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
Nephrotoxicity remains a significant concern associated with tyrosine kinase inhibitors, such as dasatinib (DASA). Previous studies have shown that DASA can induce renal tubular cell death, contributing to its nephrotoxic effects. In contrast, naringenin (NGN) is known for its antioxidant and anti-inflammatory properties.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang 550025, Guizhou Province, China. Electronic address:
Low nitrogen stress significantly limits crop production. The role of NRT1.7 as a nitrate transporter in alleviating low nitrogen stress in apple (Malus domestica) remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!