Albite is one of the major constituents in the crust. We report here that albite, when subjected to hydrous cold subduction conditions, undergoes hitherto unknown breakdown into hydrated smectite, moganite, and corundum, above 2.9 GPa and 290 °C or about 90 km depth conditions, followed by subsequent breakdown of smectite into jadeite above 4.3 GPa and 435 °C or near 135 km depth. Upon the hydration into smectite, the fluid volume of the system decreases by ~14 %, whereas it increases by ~8 % upon its dehydration into jadeite. Both the hydration and dehydration depths are correlated to increases in seismicity by 93 % and 104 %, respectively, along the South Mariana trench over the past 5 years. Moreover, the formation of smectite is accompanied by the release of OH species, which would explain the formation of moganite and expected alkalinity of the subducting fluid. Thus, we shed new insights into the mechanism of water transport and related geochemical and geophysical activities in the contemporary global subduction system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895919PMC
http://dx.doi.org/10.1038/s41467-021-21419-6DOI Listing

Publication Analysis

Top Keywords

role subducted
4
subducted albite
4
albite water
4
water cycle
4
cycle alkalinity
4
alkalinity subduction
4
subduction fluids
4
fluids albite
4
albite major
4
major constituents
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!