Mutations in the genes (, ) have been linked to the majority of familial Alzheimer's disease (AD). Although great efforts have been made to investigate pathogenic mutations, which ultimately cause an increase in the toxic form of β-amyloid (Aβ), the intrinsic physiological functions of PS in human neurons remain to be determined. In this study, to investigate the physiological roles of PS in human neurons, we generated conditional knock-out (KO) induced pluripotent stem cells (iPSCs), in which PS1 can be selectively abrogated under Cre transduction with or without additional KO. We showed that iPSC-derived neural progenitor cells (NPCs) do not confer a maintenance ability in the absence of both PS1 and PS2, showing the essential role of PS in Notch signaling. We then generated -null human cortical neurons, where PS1 was intact until full neuronal differentiation occurred. Aβ40 production was reduced exclusively in human /-null neurons along with a concomitant accumulation of amyloid β precursor protein (APP)-C-terminal fragments CTFs, whereas Aβ42 was decreased in neurons devoid of Unlike previous studies in mice, in which APP cleavage is largely attributable to PS1, γ-secretase activity seemed to be comparable between PS1 and PS2. In contrast, cleavage of another substrate, N-cadherin, was impaired only in neurons devoid of Moreover, PS2/γ-secretase exists largely in late endosomes/lysosomes, as measured by specific antibody against the γ-secretase complex, in which Aβ42 species are supposedly produced. Using this novel stem cell-based platform, we assessed important physiological PS1/PS2 functions in mature human neurons, the dysfunction of which could underlie AD pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932187 | PMC |
http://dx.doi.org/10.1523/ENEURO.0500-20.2021 | DOI Listing |
Neurol Res Pract
January 2025
Institute of Clinical Epidemiology and Biometry, Julius-Maximilians-Universität Würzburg (JMU), Haus D7, Josef-Schneider-Straße 2, 97080, Würzburg, Germany.
Background: Comprehensive clinical data regarding factors influencing the individual disease course of patients with movement disorders treated with deep brain stimulation might help to better understand disease progression and to develop individualized treatment approaches.
Methods: The clinical core data set was developed by a multidisciplinary working group within the German transregional collaborative research network ReTune. The development followed standardized methodology comprising review of available evidence, a consensus process and performance of the first phase of the study.
Acta Neuropathol Commun
January 2025
Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.
The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.
View Article and Find Full Text PDFMol Neurodegener
January 2025
The Picower Institute for Learning and Memory, Cambridge, MA, USA.
Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states.
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
The Relaxed Beliefs Under pSychedelics (REBUS) model proposes that serotonergic psychedelics decrease the precision weighting of neurobiologically-encoded beliefs. We conducted a preliminary examination of two psychological assumptions of REBUS: (a) psychedelics foster acute relaxation and post-acute revision of confidence in mental-health-relevant beliefs; which (b) facilitate positive therapeutic outcomes and are associated with the entropy of EEG signals. Healthy individuals (N = 11) were administered 1 mg and 25 mg psilocybin 4-weeks apart.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!