Biomechanical optimization of the far cortical locking technique for early healing of distal femur fractures.

Med Eng Phys

Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada; Orthopaedic Biomechanics Lab, Victoria Hospital, (Room A6-144), 800 Commissioners Road, London, ON N6A-5W9, Canada; Department of Surgery, Western University, London, ON, Canada; Department of Mechanical and Materials Engineering, Western University, London, ON, Canada. Electronic address:

Published: March 2021

This finite element study optimized far cortical locking (FCL) technology for early callus formation in distal femur fracture fixation with a 9-hole plate using FCL screws proximal to, and standard locking screws distal to, the fracture. Analyses were done for 120 possible FCL screw configurations by varying FCL screw distribution and number. A hip joint force of 700 N (i.e. 100% x body weight) was used, which corresponds to a typical 140 N "toe-touch" foot-to-ground force (i.e. 20% x body weight) suggested to patients immediately after surgery. Increased FCL screw distribution (i.e. shorter plate working length) caused a decrease at the medial side and an increase at the lateral side of the axial interfragmentary motion (AIM), mildly affected shaft and condylar cortex Von Mises max stress (σ), increased plate σ, and decreased shaft FCL screw and condylar locking screw σ. Increased FCL screw number decreased AIM and σ on the shaft cortex, condylar cortex, plate, and FCL screws, but not condylar screws. The optimal FCL screw configuration had 3 FCL screws in plate holes #1, 5, and 6 (proximal to distal) for optimal AIM of 0.2 - 1 mm and reduce shear fracture motion, thereby encouraging early callus formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2021.02.003DOI Listing

Publication Analysis

Top Keywords

fcl screw
24
fcl screws
12
fcl
10
cortical locking
8
distal femur
8
early callus
8
callus formation
8
plate fcl
8
screw distribution
8
body weight
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!