Although amitraz is one of the acaricides most commonly applied within beehives, to date, its time-dependent oral toxicity in honeybees has not been investigated, due to amitraz's instability in aqueous media. In aqueous media such as honey, amitraz rapidly forms a continuously changing tertiary mixture with two of its major hydrolysis products, DMF and DMPF. The contribution of each hydrolysis product to the overall oral toxicity of this acaricide is not known. Therefore, we aimed to characterize the depletion and formation kinetics of amitraz and its hydrolysis products in 50% sucrose solution provided to caged honeybees, including the calculation of the 50% lethal oral concentration (LC) of amitraz. We sought to determine the contribution of each component of the mixture to the overall observed toxicity. We also investigated the time- and concentration-dependent toxicity of the amitraz mixture and its hydrolysis products. A novel approach based on the analysis of the areas under the depletion and formation curves of amitraz and its hydrolysis products revealed that DMPF, amitraz and DMF accounted for 92%, 7% and 1% (respectively) of the overall toxicity of the mixture. The chronic oral LC of amitraz was 3300 μmol/L, of similar magnitude as that of the non-toxic hydrolysis product DMF. The toxicity of DMPF and the mixture decreased over time; whereas the toxicity of DMF increased over time. Amitraz's instability in aqueous media and the highly toxic profile of DMPF, suggest that DMPF is the actual toxic entity responsible for amitraz's toxicity toward honeybees.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.129923 | DOI Listing |
J Appl Microbiol
January 2025
Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
Aims: Flavobacterium strains are widely distributed in various environments and generally exhibit specialized roles in the degradation of complex organic substrates. To obtain a deeper understanding of their enzyme profiles, patterns of action on natural carbohydrates degradation, and to mine gene resources for biomass conversion.
Methods And Results: We sequenced the whole genome of a novel carbohydrate-degrading Flavobacterium sp.
Dalton Trans
January 2025
College of Life Sciences, School of Chemical Engineering, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang 330022, China.
The photocatalytic conversion of CO and HO into useful chemicals or fuels over semiconductor photocatalysts is regarded as a promising technology to address the problems of global warming and energy exhaustion. However, inefficient photo-absorption and slow charge dynamics limit the CO photoreduction efficiency. Here, a ternary heterojunction photocatalyst, CuCl(OH)/In/InO (Cu H IO), with an intimate interface is obtained a hydrogen chemical reduction approach followed by hydrolysis reaction, where In species can be produced on the surface of InO from the hydrogen chemical reaction with a calcining temperature of over 500 °C.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Faculty of Mechanical and Process Engineering, Hochschule Offenburg, 77652 Offenburg, Germany.
Protein hydrolysis under acidic conditions can improve the product quality, nutrient availability, and cost efficiency, particularly when neutral or alkaline enzymes are ineffective. Six fungal aspartic endopeptidases (FAPs) were recombinantly expressed as active enzymes in , with peak activity between 30-50 °C and pH 3.0-4.
View Article and Find Full Text PDFSci Rep
January 2025
Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Johor, Kampus Pasir Gudang, Masai Johor, 81750, Malaysia.
The depletion of oil reserves and their price and availability volatility raise researchers' concerns about renewable resources for epoxidized material. This study aims to produce in situ and ex-situ hydrolyzed dihydroxy stearic acid via the epoxidation of neem oil. Epoxidized neem oil was synthesized using in situ-generated performic acid.
View Article and Find Full Text PDFNat Commun
January 2025
DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK.
The eukaryotic helicase MCM2-7, is loaded by ORC, Cdc6 and Cdt1 as a double-hexamer onto replication origins. The insertion of DNA into the helicase leads to partial MCM2-7 ring closure, while ATP hydrolysis is essential for consecutive steps in pre-replicative complex (pre-RC) assembly. Currently it is unknown how MCM2-7 ring closure and ATP-hydrolysis are controlled.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!