Integrated buffer zones (IBZ) are novel mitigation measures designed to decrease the loading of nitrogen (N) transported by subsurface drainage systems from agricultural fields to streams. In IBZ, drainage water flows into a pond with free water surface followed by an inundated, vegetated filterbed. This design provides an environment favorable for denitrification and thus a decrease in nitrate concentration is expected as water flow through the IBZ. However, due to the establishment of anaerobic conditions, there is a risk for increasing emissions of the greenhouse gases nitrous oxide (NO) and methane (CH). In this year-long study, we evaluated the N removal efficiency along with the risk of NO and CH emissions from two pilot-scale IBZs (IBZ1 and 2). The two IBZs had very different yearly removal efficiencies, amounting to 29% and 71% of the total N load at IBZ1 and 2, respectively. This was probably due to differences in infiltration rates to the filterbed, which was 22% and 81% of the incoming water at IBZ1 and 2, respectively. The site (IBZ2) with the highest removal efficiency was a net NO sink, while 0.9% of the removed nitrate was emitted as NO at IBZ1. Both IBZs were net sources of CH but with different pathways of emission. In IBZ1 CH was mainly lost directly to the atmosphere, while waterborne losses dominated in IBZ2. In conclusion, the IBZs were effective in removing N three years after establishment, and although the IBZs acted as greenhouse gas sources, especially due to CH, the emissions were comparable to those of natural wetlands and other drainage transport mitigation measures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145070DOI Listing

Publication Analysis

Top Keywords

greenhouse gas
8
integrated buffer
8
buffer zones
8
drainage water
8
mitigation measures
8
removal efficiency
8
ibz1 ibzs
8
water
5
ibzs
5
ibz1
5

Similar Publications

Agricultural production costs represent less than half of total food prices for higher-income countries and will likely further decrease globally. Added-value components such as transport, processing, marketing and catering show increasing importance in food value chains, especially as countries undergo a nutrition transition towards more complex and industrial food systems. Here, using a combined statistical and process-based modelling framework, we derive and project the value-added component of food prices for 136 countries and 11 different food groups, for food-at-home and food-away-from-home.

View Article and Find Full Text PDF

Isolated Neutral Organic Radical Unveiled Solvent-Radical Interaction in Highly Reducing Photocatalysis.

Angew Chem Int Ed Engl

January 2025

The University of Arizona, Chemistry and BioChemistry, 1306 E University Blvd, CSML 638, 85719, Tucson, UNITED STATES OF AMERICA.

Diffusion-limited kinetics is a key mechanistic debate when consecutive photoelectron transfer (conPET) is discussed in photoredox catalysis. In-situ generated organic photoactive radicals can access catalytic systems as reducing as alkaline metals that can activate remarkably stable bonds. However, in many cases, the extremely short-lived transient nature of these doublet state open-shell species has led to debatable mechanistic studies, hindering adoption and development.

View Article and Find Full Text PDF

The pressing necessity to mitigate climate change and decrease greenhouse gas emissions has driven the advancement of heterostructure-based photocatalysts for effective CO₂ reduction. This study introduces a novel heterojunction photocatalyst formed by integrating potassium-doped polymeric carbon nitride (KPCN) with metallic Zn₃N₂, synthesized via a microwave-assisted molten salt method. The resulting Schottky contact effectively suppresses the reverse diffusion of electrons, achieving spatial separation of photogenerated charges and prolonging their lifetime, which significantly enhances photocatalytic activity and efficiency.

View Article and Find Full Text PDF

Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.

View Article and Find Full Text PDF

Oxygen vacancy-rich defective tungsten oxide (WO) modified by Prussian blue for efficient photocatalytic carbon dioxide conversion and tetracycline degradation.

J Colloid Interface Sci

December 2024

Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece. Electronic address:

The coupling of carbon dioxide (CO) with epoxides to produce cyclic carbonates is a desirable decarbonization approach, but its commercial applicability is still restricted by the costly catalysts required, as well as the need for high temperature and high pressure. Herein, oxygen vacancy-rich defective tungsten oxide (WO) rich in Lewis acid sites was modified by Prussian blue (PB), and the obtained composite reaches up to 94 % styrene carbonate yield (171 mmol gh) at ambient temperature and pressure, exhibiting outstanding advantages in the photocatalytic CO cycloaddition reaction compared with currently reported photocatalysts. It is found that the introduction of PB with photothermal properties significantly enhances the capability of WO to absorb and activate CO and epoxide, along with its light utilization ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!