Prescription opioids are powerful pain-controlling medications that have both benefits and potentially serious risks. Morphine is one of the preferred analgesics that are widely used to treat chronic pain. However, chronic morphine exposure has been found to cause both functional and structural changes in several brain regions, including the medial prefrontal cortex (mPFC), ventral tegmental area (VTA), and hippocampus (HPC), which lead to addictive behavior. Caveolin-1 (Cav-1), a scaffolding protein of membrane lipid rafts (MLRs), has been shown to organize GPCRs and multiple synaptic signaling proteins within the MLRs to regulate synaptic signaling and neuroplasticity. Previously, we showed that in vitro morphine treatment significantly elevates Cav-1 expression and causes neuroplasticity changes. In this study, we confirmed that chronic morphine exposure can significantly increase Cav-1 expression (P < 0.05) and microtubule-associated protein (MAP-2)-positive neuronal dendritic growth in the hippocampus. Moreover, the rewarding effect and dendritic growth in the HPC induced by chronic morphine exposure were significantly inhibited by hippocampal Cav-1 knockdown. Together, these data suggest that Cav-1 in the hippocampus plays an essential role in the neuroplasticity changes that underlie morphine addiction behaviors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2021.135742 | DOI Listing |
Acta Neurobiol Exp (Wars)
January 2025
Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene is a critical tumor suppressor that plays an essential role in the development and functionality of the central nervous system. Located on chromosome 10 in humans and chromosome 19 in mice, PTEN encodes a protein that regulates cellular processes such as division, proliferation, growth, and survival by antagonizing the PI3K‑Akt‑mTOR signaling pathway. In neurons, PTEN dephosphorylates phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) to PIP2, thereby modulating key signaling cascades involved in neurogenesis, neuronal migration, and synaptic plasticity.
View Article and Find Full Text PDFF1000Res
January 2025
Pathology, Faculty of Veterinary, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia.
Background: Traumatic brain injury (TBI) is a change in brain function or evidence of brain pathology caused by external mechanical forces. Brain Derived Neurotrophic Factor (BDNF) is a neurotropin that functions as a neuron protective. Nigella sativa L is reported to have an antioxidant effect, administration of Nigella Sativa L to rats treated with ischemia-reperfusion brain injury.
View Article and Find Full Text PDFJ Appl Gerontol
January 2025
Seoul National University, Seoul, Republic of Korea.
This study aims to examine the trajectory of older adults' cognitive function over time and identify its predictors. Based on the model of neuroplasticity and cognitive reserve, participants' general characteristics as well as their physical, mental, and social factors were included as predictors of cognitive function. A latent growth model analysis was used to examine the trajectory of cognitive function and its predictors.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Orofacial Pain and Jaw Function, Malmö University, Malmö, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark; Scandinavian Center for Orofacial Neurosciences (SCON), Malmö, Sweden.
Occlusal tactile acuity (OTA) and bite force are essential components of the sensorimotor control of oral behaviors. While these variables have been studied independently, it has not yet been revealed whether compressive force impacts the occlusal perception mediated by the mechanoreceptive afferents in the periodontal ligament. The present study examined the effect of repetition and maximum bite force on OTA by testing nine aluminum foils of different thicknesses together with a sham test with no foil, three times each, in randomized order in 36 healthy individuals.
View Article and Find Full Text PDFInt J Exerc Sci
December 2024
Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, CAN.
Aerobic exercise has been shown to impact corticospinal excitability (CSE), however the mechanism(s) by which this occurs is unclear. Some evidence suggests an increase in blood lactate concentration resulting from exercise may be what is driving these changes in corticospinal excitability. The extent of literature examining this effect and whether it is consistent across the literature is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!