Ninhydrin-functionalized chitosan for selective removal of Pb(II) ions: Characterization and adsorption performance.

Int J Biol Macromol

Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China. Electronic address:

Published: April 2021

A chitosan-based adsorbents (CS-Ninhydrin) was prepared by grafting ninhydrin for Pb(II) ions adsorption. SEM-EDS, XRD and FTIR analysis were used to characterize the synthesized CS-Ninhydrin. The static adsorption experiments showed that CS-Ninhydrin had a good removal rate for Pb(II) ions in a wide range of pH 3 to 7, quickly reached equilibrium (120 min) and had a higher adsorption capacity (196 mg/g). Pseudo second-order and Langmuir models showed that the adsorption process of Pb(II) by CS-Ninhydrin was a single-layer chemical adsorption. Temperature experiments showed that the reaction was a spontaneous exothermic process. In the wastewater experiment, CS-Ninhydrin showed an excellent selectivity to Pb(II) ions. The reusability of CS-Ninhydrin was perfect after five adsorption-desorption cycles. The main adsorption mechanism was the chelating and electrostatic action between N and O groups in CS-Ninhydrin and Pb(II) ions. Therefore, the new adsorbent CS-Ninhydrin was expected to promote the wide application of chitosan in Pb(II) adsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.02.110DOI Listing

Publication Analysis

Top Keywords

pbii ions
20
adsorption
8
cs-ninhydrin
8
pbii
7
ions
5
ninhydrin-functionalized chitosan
4
chitosan selective
4
selective removal
4
removal pbii
4
ions characterization
4

Similar Publications

Application of supervised learning models for enhanced lead (II) removal from wastewater via modified cellulose nanocrystals (CNCs).

J Environ Sci Health A Tox Hazard Subst Environ Eng

January 2025

Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa.

Heavy metal ions are acknowledged to impact the environment and human health adversely. CNCs are effective materials for removing heavy metal ions in industrial applications and process innovations since they can be used in static and dynamic adsorption processes. Cost-effective, uncomplicated water treatment technologies must be developed using biodegradable polymers, namely, modified cellulose nanocrystals.

View Article and Find Full Text PDF

Light-driven in-situ synthesis of nano-sulfur and graphene oxide composites for efficient removal of heavy metal ions.

J Hazard Mater

January 2025

State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:

Sulfur nanoparticles (SNPs) and their composites are promising for heavy metal adsorption, yet current SNPs often lack surface S, leading to low affinity toward heavy metal and ease of aggregation. Here, we report a simple light-driven method for facile prepare SNPs with surfaces enriched with S and in-situ load them onto graphene oxide (GO) to fabricate GO-S composites. Under illumination, the O generated by photosensitizer phloxine B was able to oxidize S into elemental SNPs.

View Article and Find Full Text PDF

A Schiff base-functionalized chitosan magnetic bio-nanocomposite for efficient removal of Pb (II) and Cd (II) ions from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Chemistry, Faculty of Science, Arak University, Arak 38481-77584, Iran; Institute of Nanosciences &Nanotechnology, Arak University, Arak, Iran. Electronic address:

The rapid industrialization and human activities in catchments have posed notable global challenges in removing of heavy metal contaminants from wastewater. Here, Schiff-bases (SB) of cyanoguanidine (CG) and salicylaldehyde (SA) were covalently grafted on a magnetic nanocomposite of chitosan to form a hybrid magnetic nanostructure (FeO@CS-CGSB). The synthesized structure was characterized using various techniques such as Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), zeta potential, and Brunauer-Emmett-Teller surface area analysis (BET).

View Article and Find Full Text PDF

Naturally widespread ferrihydrite is unstable and often coexists with complex ions, such as the heavy metal ion Pb(II). Ferrihydrite could fix Pb(II) by precipitation and hydroxyl adsorption, but release Pb(II) with mineral aging. Gallic acid plays an important role in influencing the geochemical behavior of ferrihydrite-Pb, and anoxia is one of the factors influencing the transformation of mineral.

View Article and Find Full Text PDF

Efficient removal of direct dyes and heavy metal ion by sodium alginate-based hydrogel microspheres: Equilibrium isotherms, kinetics and regeneration performance study.

Int J Biol Macromol

January 2025

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China. Electronic address:

Improving the adsorption capacity of materials for pollutants by means of modification is an important direction in the research of water treatment technology. To improve the applicability of sodium alginate composites in the field of adsorption, magnetic sodium alginate-based hydrogel microsphere adsorbent material FeO@SA/PEI-Fe (FSPF) was synthesized in a single step by using polyethyleneimine grafting modification of sodium alginate by sol-gel method. The material was used for the removal of direct blue GL (DB 200) and direct date red B (DR 13) from simulated wastewater, as well as Cu(II) and Pb(II) from simulated wastewater with heavy metal ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!