HSP90 inhibitors are in numerous cancer clinical trials, but treatments often induce toxicity at effective dosages. In this issue of Cell Chemical Biology, Zavareh et al. (2020) serendipitously found that HSP90 inhibitors, at manageable doses, can reduce target cell expression of immune checkpoint molecules, potentially enabling improved anti-cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chembiol.2021.02.002 | DOI Listing |
J Biol Chem
December 2024
The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The Joint National Laboratory of Antibody Drug Engineering, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, China; Kaifeng Key Lab for Cataracts and Myopia, Kaifeng Central Hospital, Kaifeng, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China. Electronic address:
Genetic mutations in retinol dehydrogenase 5 (RDH5), a rate-limiting enzyme of the visual cycle, is associated with nyctalopia, AMD and stationary congenital fundus albipunctatus (FA). A majority of these mutations impair RDH5 protein expression and intracellular localization. However, the regulatory mechanisms underlying RDH5 metabolism remain unclear.
View Article and Find Full Text PDFMol Cell Biol
December 2024
Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
In esophageal squamous cell carcinoma, genetic activation of NRF2 increases resistance to chemotherapy and radiotherapy, which results in a significantly worse prognosis for patients. Therefore NRF2-activated cancers create an urgent clinical need to identify new therapeutic options. In this context, we previously identified the geldanamycin family of HSP90 inhibitors, which includes 17DMAG, to be synthetic lethal with NRF2 activity.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
December 2024
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
Idiopathic pulmonary fibrosis (IPF) represents a grave challenge as it is characterized by high fatality rates and irreversible progression without effective clinical interventions available at present. Previous studies have demonstrated that inhibition of heat shock protein 90 (HSP90) by an N-terminal inhibitor disrupts its interaction with TGFβRII, leading to the instability of TGFβRII, thus blocking the role of transforming growth factor-β1 (TGF-β1), which could potentially ameliorate IPF symptoms. However, given that the broad spectrum of HSP90 N-terminal inhibitors may lead to unanticipated side effects, we hypothesize that C-terminal inhibitors of HSP90 can interfere with TGFβRII while minimizing adverse reactions.
View Article and Find Full Text PDFOncol Rev
December 2024
Department of Obstetrics and Gynecology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
Survivin belongs to the inhibitor of apoptosis protein (IAP) family and is encoded by the baculoviral inhibitor of apoptosis repeat-containing, or BIRC5, gene. It is preferentially expressed in cancers with functional complexity in cell signaling cascades such as extracellular signal-regulated kinases (ERK), mitogen-activated protein kinases (MAPK), heat shock protein-90 (HSP90), epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), signal transducer and activator of transcription (STAT), hypoxia-inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), and others. Survivin plays a role in cell division and cell death, properties that have attracted a large body of research to decipher its therapeutic and prognostic significance in cancer.
View Article and Find Full Text PDFCancers (Basel)
November 2024
Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
Heat shock factor 1 (HSF1) plays a central role in orchestrating the heat shock response (HSR), leading to the activation of multiple heat shock proteins (HSPs) genes and approximately thousands of other genes involved in various cellular functions. In cancer cells, HSPs play a particular role in coping with the accumulation of damaged proteins resulting from dysregulated translation and post-translational processes. This proteotoxic stress is a hallmark of cancer cells and causes constitutive activation of HSR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!