A possible application of self-propelling particles is the transport of microscopic cargo. Maximizing the collection and transport efficiency of particulate matter requires the area swept by the moving particle to be as large as possible. One such particle geometry are rods propelled perpendicular to their long axis, that act as "sweepers" for collecting particles. Here we report on the required Janus coating to achieve such motion, and on the dynamics of the collection and transport of microscopic cargo by sideways propelled Janus rods.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1sm00042jDOI Listing

Publication Analysis

Top Keywords

perpendicular long
8
long axis
8
transport microscopic
8
microscopic cargo
8
collection transport
8
'sweeping rods'
4
rods' cargo
4
transport
4
cargo transport
4
transport self-propelled
4

Similar Publications

Parametric finite element modeling of reinforced polymeric leaflets for improved durability.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, Colorado State University, 700 Meridian Ave, Fort Collins, 80523, CO, USA. Electronic address:

Hyaluronic acid-enhanced polyethylene polymeric TAVR shows excellent in vivo anti-calcific, anti-thrombotic, and in vitro hydrodynamic performance. However, during durability testing, impact wear and fatigue cause early valve failure. Heart valve durability can be improved by strengthening the leaflet with fiber reinforcement.

View Article and Find Full Text PDF
Article Synopsis
  • The shape and arrangement of grains in mixtures affect the electrical properties, with elongated grains impacting conductivity based on their alignment with electric current.
  • When conductor grains are aligned with the current stream, they enhance conductivity and lower the critical percolation threshold, while insulator elongation in this direction shows minimal impact on thresholds.
  • This study introduces a simulation model (EMT) that explores how variations in dielectric constant and conductivity relate to grain elongation in mixed materials, highlighting the significance of alignment direction.
View Article and Find Full Text PDF

Objective: This study evaluated dentin morphology and pulp cavity temperature changes during nanosecond‑ and microsecond‑pulse Er, Cr: YSGG laser debonding restoration and residual adhesive.

Materials And Methods: Ten caries-free teeth had their enamel removed perpendicular to the long axis, followed by bonding of glass ceramic restorations. The samples were randomly divided into two groups and subjected to Er, Cr: YSGG laser (3 mJ, 100 Hz, 100 ns), (3 mJ, 100 Hz, 150 µs) for debonding of restoration and residual adhesive on dentin surfaces.

View Article and Find Full Text PDF

Using an acid to stimulate a heterogeneous carbonate reservoir during matrix acidizing may lead to over-treating the high permeability zones, leaving low permeability zones untreated. This is particularly exacerbated in long horizontal sections, necessitating the use of acid diverters for effective acid distribution across the formation. In previous studies, conventional core flooding systems were utilized where single inlet and outlet lines were used or, at best, two outlet lines for dual-core flooding.

View Article and Find Full Text PDF

Spin-Orbit Torque (SOT) Magnetic Random-Access Memory (MRAM) devices offer improved power efficiency, nonvolatility, and performance compared to static RAM, making them ideal, for instance, for cache memory applications. Efficient magnetization switching, long data retention, and high-density integration in SOT MRAM require ferromagnets (FM) with perpendicular magnetic anisotropy (PMA) combined with large torques enhanced by Orbital Hall Effect (OHE). We have engineered a PMA [Co/Ni] FM on selected OHE layers (Ru, Nb, Cr) and investigated the potential of theoretically predicted larger orbital Hall conductivity (OHC) to quantify the torque and switching current in OHE/[Co/Ni] stacks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!