Background: This study aimed to illustrate the potential utility of a simple filter model in understanding the patient outcome and cost-effectiveness implications for depression interventions in primary care.
Methods: Modelling of hypothetical intervention scenarios during different stages of the treatment pathway was conducted.
Results: Three scenarios were developed for depression related to increasing detection, treatment response and treatment uptake. The incremental costs, incremental number of successes (i.e., depression remission) and the incremental costs-effectiveness ratio (ICER) were calculated. In the modelled scenarios, increasing provider treatment response resulted in the greatest number of incremental successes above baseline, however, it was also associated with the greatest ICER. Increasing detection rates was associated with the second greatest increase to incremental successes above baseline and had the lowest ICER.
Conclusions: The authors recommend utility of the filter model to guide the identification of areas where policy stakeholders and/or researchers should invest their efforts in depression management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894811 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246728 | PLOS |
Sensors (Basel)
January 2025
College of Mechatronics Engineering, North University of China, Taiyuan 030051, China.
To enhance the positioning accuracy of autonomous underwater vehicles (AUVs), a new adaptive filtering algorithm (RHAUKF) is proposed. The most widely used filtering algorithm is the traditional Unscented Kalman Filter or the Adaptive Robust UKF (ARUKF). Excessive noise interference may cause a decrease in filtering accuracy and is highly likely to result in divergence by means of the traditional Unscented Kalman Filter, resulting in an increase in uncertainty factors during submersible mission execution.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China.
To address the issue of low-elevation target height measurement in the Multiple Input Multiple Output (MIMO) radar, this paper proposes a height measurement method for meter-wave MIMO radar based on transmitted signals and receive filter design, integrating beamforming technology and cognitive processing methods. According to the characteristics of beamforming technology forming nulls at interference locations, we assume that the direct wave and reflected wave act as interference signals and hypothesize a direction for a hypothetical target. Then, the data received are processed to obtain the height of low-elevation-angle targets using a cognitive approach that jointly optimizes the transmitted signal and receive filter.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Smart Diagnostic and Online Monitoring, Leipzig University of Applied Sciences, Wächterstraße 13, 04107 Leipzig, Germany.
This paper presents a comparative study of different AI models for indoor positioning systems, emphasizing improvements in localization accuracy and processing time. This study examines Artificial Neural Networks (ANNs), Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNNs), and the Kalman filter using a real Received Signal Strength Indicator (RSSI) and 9-axis ICM-20948 sensor. An in-depth analysis is provided in this paper for data cleaning and feature selection to reduce errors for all the models.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
This paper proposes a hierarchical framework-based solution to address the challenges of vehicle state estimation and lateral stability control in four-wheel independent drive electric vehicles. First, based on a three-degrees-of-freedom four-wheel vehicle model combined with the Magic Formula Tire model (MF-T), a hierarchical estimation method is designed. The upper layer employs the Kalman Filter (KF) and Extended Kalman Filter (EKF) to estimate the vertical load of the wheels, while the lower layer utilizes EKF in conjunction with the upper-layer results to further estimate the lateral forces, longitudinal velocity, and lateral velocity, achieving accurate vehicle state estimation.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Economics and Management, Russian University of Cooperation, 420034 Kazan, Russia.
The process of establishing relay protection and automation (RPA) settings for electric power systems (EPSs) entails complex calculations of operating modes. Traditionally, these calculations are based on symmetrical components, which require the building of equivalent circuits of various sequences. This approach can lead to errors both when identifying the operating modes and when modeling the RPA devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!