Chemically Localized Resonant Excitons in Silver-Pnictogen Halide Double Perovskites.

J Phys Chem Lett

Department of Physics, University of California, Berkeley, California 94720, United States.

Published: March 2021

Halide double perovskites with alternating silver and pnictogen cations are an emerging family of photoabsorber materials with robust stability and band gaps in the visible range. However, the nature of optical excitations in these systems is not yet well understood, limiting their utility. Here, we use many-body perturbation theory within the approximation and the Bethe-Salpeter equation approach to calculate the electronic structure and optical excitations of the double perovskite series CsAgBX, with B = Bi, Sb and X = Br, Cl. We find that these materials exhibit strongly localized resonant excitons with energies from 170 to 434 meV below the direct band gap. In contrast to lead-based perovskites, the CsAgBX excitons are computed to be non-hydrogenic with anisotropic effective masses and sensitive to local field effects, a consequence of their chemical heterogeneity. Our calculations demonstrate the limitations of the Wannier-Mott and Elliott models for this class of double perovskites and contribute to a detailed atomistic understanding of their light-matter interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8028306PMC
http://dx.doi.org/10.1021/acs.jpclett.0c03579DOI Listing

Publication Analysis

Top Keywords

double perovskites
12
localized resonant
8
resonant excitons
8
halide double
8
optical excitations
8
chemically localized
4
excitons silver-pnictogen
4
silver-pnictogen halide
4
double
4
perovskites
4

Similar Publications

Lead-free halide double perovskites (DPs) have become a research hotspot in the field of photoelectrons due to their unique optical properties and flexible compositional tuning. However, the luminescence of DPs exhibits thermal quenching at high temperatures, which severely affects their further application. Herein, we synthesized the rare earth Dy and transition metal Mn codoped CsNaYCl rare earth DPs and characterized the optical properties using temperature-dependent photoluminescence spectra and time-resolved photoluminescence decay profiles at different temperatures.

View Article and Find Full Text PDF

Hybridization effects on the magnetic ground state of ruthenium in double perovskite LaZnRuTiO.

J Phys Condens Matter

January 2025

School of Materials Science, Indian Association for the Cultivation of Science, Calcutta 700 032, Kolkata, West Bengal, 700032, INDIA.

An exotic quantum mechanical ground state, i.e. the nonmagnetic= 0 state, has been predicted for higher transition metal tsystems, due to the influence of strong spin-orbit coupling (SOC) or in other words, due to unquenched orbital moment contribution.

View Article and Find Full Text PDF

Context: Exploration for renewable and environmentally friendly energy sources has become a major challenge to overcome the depletion of fossil fuels and their environmental hazards. Therefore, solar cell technology, as an alternative solution, has attracted the interest of many researchers. In the present work, the CsXInBr (X = Cu or Ag) compounds as lead-free halide perovskites have been studied due to their direct energy gap in the range of solar energy, thermodynamic stability, low effective mass of electrons, and high absorption coefficient.

View Article and Find Full Text PDF

Rational design of a series of non-centrosymmetric antiperovskite and double antiperovskite borate fluorides.

Chem Sci

December 2024

Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China

Non-centrosymmetric (NCS) compounds can exhibit many symmetry-dependent functional properties, yet their rational structure design remains a great challenge. Herein, a strategy to introduce F-centered octahedra to construct a perovskite-type framework filled by π-conjugated [BO] dimers is proposed to obtain NCS compounds. The first examples of antiperovskite or double antiperovskite borate fluorides, [(M/Ba)Ca]F[BO] (M = K, Rb) and [CsBaCa]F[BO], have been successfully designed and synthesized.

View Article and Find Full Text PDF

The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!