An unprecedented and general titanium-catalyzed boration of alkyl (pseudo)halides (alkyl-X, X=I, Br, Cl, OMs) with borane (HBpin, HBcat) is reported. The use of titanium catalyst can successfully suppress the undesired hydrodehalogenation products that prevail using other transition-metal catalysts. A series of synthetically useful alkyl boronate esters are readily obtained from various (primary, secondary, and tertiary) alkyl electrophiles, including unactivated alkyl chlorides, with tolerance of other reducing functional groups such as ester, alkene, and carbamate. Preliminary studies on the mechanism revealed a possible radical reaction pathway. Further extension of our strategy to aryl bromides is also demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202100569 | DOI Listing |
J Org Chem
October 2023
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
The Ni-catalyzed alkylboration of endocyclic olefins is a stereo- and regioselective approach for the synthesis of boron-containing compounds. We report a detailed density functional theory (DFT) study to elucidate the mechanism and origins of the stereo-, chemo-, and regioselectivity of alkylboration of endocyclic olefins enabled by nickel catalysis. The alkylboration proceeds via the migratory insertion of alkenes, β-H elimination of the Ni(II) complex, subsequent migratory insertion leading to a new Ni(II) complex, combined with an alkyl radical, and reductive eliminations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2021
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
An unprecedented and general titanium-catalyzed boration of alkyl (pseudo)halides (alkyl-X, X=I, Br, Cl, OMs) with borane (HBpin, HBcat) is reported. The use of titanium catalyst can successfully suppress the undesired hydrodehalogenation products that prevail using other transition-metal catalysts. A series of synthetically useful alkyl boronate esters are readily obtained from various (primary, secondary, and tertiary) alkyl electrophiles, including unactivated alkyl chlorides, with tolerance of other reducing functional groups such as ester, alkene, and carbamate.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2019
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
The first example of an efficient and direct dehydrogenative boration of alkenes for vinyl boronate ester synthesis was achieved using a zirconium catalyst. Our methodology avoids using precious transition metals, additional hydrogen acceptors, high temperatures, and long reaction times, which were required to overcome the reducing ability of borane, to give alkyl boronate esters. Detailed mechanistic studies revealed a reversible reaction pathway and further suggested applying the zirconium complex as a "shuttle catalyst" for transfer boration, which thus sidesteps the use of relatively sensitive borane.
View Article and Find Full Text PDFChemistry
November 2015
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan).
The first regiodivergent oxyboration of unactivated terminal alkenes is reported, using copper alkoxide as a catalyst, bis(pinacolato)diboron [(Bpin)2 ] as a boron source, and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) as an oxygen source. The reaction is compatible with various functional groups. Two regioisomers are selectively produced by selecting the appropriate ligands on copper.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!