The Xenopus Oocyte as an Expression System for Functional Analyses of Fish Aquaporins.

Methods Mol Biol

IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.

Published: March 2021

Aquaporins are membrane proteins present in all organisms that selectively transport water and small, uncharged solutes across biological membranes along an osmotic gradient. Recent gene editing technologies in zebrafish (Danio rerio) have started to uncover the physiological functions of the aquaporins in teleosts, but these approaches require methods to establish the effects of specific mutations on channel function. The oocytes of the South African frog Xenopus laevis are widely used for the expression of bacterial, plant, and animal aquaporins, and this heterologous system has contributed to numerous discoveries in aquaporin biology. This chapter focuses on techniques used for oocyte preparation and aquaporin expression and gives an overview of specific methods to determine water and solute permeability of the channels and their intracellular trafficking in oocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0970-5_2DOI Listing

Publication Analysis

Top Keywords

xenopus oocyte
4
oocyte expression
4
expression system
4
system functional
4
functional analyses
4
analyses fish
4
aquaporins
4
fish aquaporins
4
aquaporins aquaporins
4
aquaporins membrane
4

Similar Publications

Role of mutation G255A in modulating pyrethroid sensitivity in insect sodium channels.

Int J Biol Macromol

January 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China; School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China. Electronic address:

A voltage-gated sodium channel (VGSC) plays a crucial role in insect electrical signals, and it is a target for various naturally occurring and synthesized neurotoxins, including pyrethroids and dichlorodiphenyltrichloroethane. The type of agent is typically widely used to prevent and control sanitary and agricultural pests. The perennial use of insecticides has caused mutations in VGSCs that have given rise to resistance in most insects.

View Article and Find Full Text PDF

Ruvbl1 silencing affects reproduction of the corn planthopper, Peregrinus maidis.

PLoS One

January 2025

Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.

Ruvbl1 (also known as TIP49, Pontin) encodes an ATPase of the AAA+ protein superfamily involved in several cellular functions, including chromatin remodeling, control of transcription, and cellular development (motility, growth, and proliferation). While its role has been well established in model organisms including vertebrates and invertebrates (e.g.

View Article and Find Full Text PDF

Background: R-Glabridin is a major flavonoid of licorice (Glycyrrhiza glabra) root and known to modulate GABAA receptors, which are targets of many clinical hypnotics. However, R-glabridin hypnotic activity has not been reported in animals.

Methods: Inverted photomotor responses (IPMRs) were used to assess the hypnotic effects of natural R-glabridin and synthetic R/S-glabridin in wild-type zebrafish larvae and transgenic larvae lacking functional GABAA receptor β3 subunits (β30/0).

View Article and Find Full Text PDF

Recent studies, typically using patient cerebrospinal fluid (CSF), have suggested that different autoantibodies (Aabs) acting on their respective receptors, may underlie neuropsychiatric disorders. The GluN1 (NR1) subunit of the N-methyl-D-aspartate receptor (NMDAR) has been identified as a target of anti-NMDAR Aabs in a number of central nervous system (CNS) diseases, including encephalitis and autoimmune epilepsy. However, the role or the nature of Aabs responsible for effects on neuronal excitability and synaptic plasticity is yet to be established fully.

View Article and Find Full Text PDF

Alanine to glycine substitution in the PyR2 confers sodium channel resistance to Type I pyrethroids.

Pest Manag Sci

December 2024

The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China.

Background: Aedes aegypti is a primary urban vector of dengue, yellow fever, Zika and chikungunya worldwide. Pyrethroid insecticides are the most effective insecticides for controlling Ae. aegypti.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!