Ligand patterns at the nanoscale are essential in modulating biological recognition and signaling through binding to receptor oligomers. Biocompatible nanoscaffolds that allow precise control of multiple ligand presentation would be of great use in manipulating cellular processes and understanding membrane receptor biology. We have previously developed tri-helix and tetra-helix macrocycle scaffolds based on the Pro9 peptide helix to control ligand arrangements that can selectively target receptor oligomers. A better understanding of the structure of these macromolecules would significantly reduce the difficulty in designing matching ligand positions for target receptors. In this work, we expand the arsenal of ligand patterns by preparing polyproline tri-helix macrocycle scaffolds of different sizes. These synthetic nanoscaffolds composed of peptide helices ranging from Pro6 to Pro12 also allowed us to systematically investigate their properties. With a combination of circular dichroism spectroscopy and ion mobility spectrometry-mass spectrometry (IMS-MS), the measurement for varied sizes of these scaffolds indicated the connecting dihedral angle between both ends of the helix affects the strain in the cyclic scaffold. The experimental collision cross section obtained from IMS-MS favors a propeller model for the helix arrangements. The results not only contribute conformational insights for the polyproline tri-helix system, but also provide precious information for the future design and synthesis of cyclic nanostructures based on peptide helices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr08184a | DOI Listing |
Nanoscale Adv
January 2024
Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
Multivalent ligands hold promise for enhancing avidity and selectivity to simultaneously target multimeric proteins, as well as potentially modulating receptor signaling in pharmaceutical applications. Essential for these manipulations are nanosized scaffolds that precisely control ligand display patterns, which can be achieved by using polyproline oligo-helix macrocyclic nanoscaffolds selective binding to protein oligomers and cell surface receptors. This work focuses on synthesis and structural characterization of different-sized polyproline tri-helix macrocyclic (PP3M) scaffolds.
View Article and Find Full Text PDFNanoscale
March 2021
Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan. and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.
Ligand patterns at the nanoscale are essential in modulating biological recognition and signaling through binding to receptor oligomers. Biocompatible nanoscaffolds that allow precise control of multiple ligand presentation would be of great use in manipulating cellular processes and understanding membrane receptor biology. We have previously developed tri-helix and tetra-helix macrocycle scaffolds based on the Pro9 peptide helix to control ligand arrangements that can selectively target receptor oligomers.
View Article and Find Full Text PDFSmall
May 2019
Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Multivalent ligand-receptor interactions play essential roles in biological recognition and signaling. As the receptor arrangement on the cell surface can alter the outcome of cell signaling and also provide spatial specificity for ligand binding, controlling the presentation of ligands has become a promising strategy to manipulate or selectively target protein receptors. The lack of adjustable universal tools to control ligand positions at the size of a few nanometers has prompted the development of polyproline tri-helix macrocycles as scaffolds to present ligands in designated patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!