Introduction: Drug repositioning aims to screen drugs and therapeutic goals from approved drugs and abandoned compounds that have been identified as safe. This trend is changing the landscape of drug development and creating a model of drug repositioning for new drug development. In the recent decade, machine learning methods have been applied to predict the binding affinity of compound proteins, while deep learning is recently becoming prominent and achieving significant performances. Among the models, the way of representing the compounds is usually simple, which is the molecular fingerprints, i.e., a single SMILES string.

Methods: In this study, we improve previous work by proposing a novel representing manner, named SMILES#, to recode the SMILES string. This approach takes into account the properties of compounds and achieves superior performance. After that, we propose a deep learning model that combines recurrent neural networks with a convolutional neural network with an attention mechanism, using unlabeled data and labeled data to jointly encode molecules and predict binding affinity.

Results: Experimental results show that SMILES# with compound properties can effectively improve the accuracy of the model and reduce the RMS error on most data sets.

Conclusion: We used the method to verify the related and unrelated compounds with the same target, and the experimental results show the effectiveness of the method.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1386207324666210219102728DOI Listing

Publication Analysis

Top Keywords

deep learning
12
drug repositioning
8
drug development
8
predict binding
8
dl-smiles# novel
4
novel encoding
4
encoding scheme
4
scheme predicting
4
predicting compound
4
compound protein
4

Similar Publications

Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.

View Article and Find Full Text PDF

Central to the development of universal learning systems is the ability to solve multiple tasks without retraining from scratch when new data arrives. This is crucial because each task requires significant training time. Addressing the problem of continual learning necessitates various methods due to the complexity of the problem space.

View Article and Find Full Text PDF

Accurate classification of logos is a challenging task in image recognition due to variations in logo size, orientation, and background complexity. Deep learning models, such as VGG16, have demonstrated promising results in handling such tasks. However, their performance is highly dependent on optimal hyperparameter settings, whose fine-tuning is both labor-intensive and time-consuming.

View Article and Find Full Text PDF

Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias.

View Article and Find Full Text PDF

A two-level resolution neural network with enhanced interpretability for freeway traffic forecasting.

Sci Rep

December 2024

Department of Civil Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Deep learning models are widely used for traffic forecasting on freeways due to their ability to learn complex temporal and spatial relationships. In particular, graph neural networks, which integrate graph theory into deep learning, have become popular for modeling traffic sensor networks. However, traditional graph convolutional networks (GCNs) face limitations in capturing long-range spatial correlations, which can hinder accurate long-term predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!