We use real-time time-dependent density functional theory to investigate the effect of optical and extreme ultraviolet (XUV) circularly polarized femtosecond pulses on the magnetization dynamics of ferromagnetic materials. We demonstrate that the light induces a helicity-dependent reduction of the magnitude of the magnetization. In the XUV regime, where the 3p semicore states are involved, a larger helicity dependence persisting even after the passage of light is exhibited. Finally, we were able to separate the part of the helicity-dependent dynamics due to the absorption from the part due to the inverse Faraday effect. Doing so, we show that the former has, overall, a greater impact on the magnetization than the latter, especially after the pulse and in the XUV regime. This work hints at the yet experimentally unexplored territory of the XUV light-induced helicity-dependent dynamics, which, according to our prediction, could magnify the helicity-dependent dynamics already exhibited in the optical regime.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.0c04166DOI Listing

Publication Analysis

Top Keywords

helicity-dependent dynamics
12
optical regime
8
extreme ultraviolet
8
xuv regime
8
regime
5
study helicity-dependent
4
helicity-dependent light-induced
4
light-induced demagnetization
4
demagnetization optical
4
regime extreme
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!