Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Construction of 2D transition metal dichalcogenide (TMD)-based epitaxial heterostructures with different compositions is important for various promising applications, including electronics, photonics, and catalysis. However, the rational design and controlled synthesis of such kind of heterostructures still remain challenge, especially for those consisting of layered TMDs and other non-layered materials. Here, a facile one-pot, wet-chemical method is reported to synthesize Cu S Se -MoS heterostructures in which two types of different epitaxial configurations, i.e., vertical and lateral epitaxies, coexist. The chalcogen ratio (S/Se) in Cu S Se and the loading amount of MoS in the heterostructures can be tuned. Impressively, the obtained Cu S Se -MoS heterostructures can be transformed to CdS Se -MoS without morphological change via cation exchange. As a proof-of-concept application, the obtained CdS Se -MoS heterostructures with controllable compositions are used as photocatalysts, exhibiting distinctive catalytic activities toward the photocatalytic hydrogen evolution under visible light irradiation. The method paves the way for the synthesis of different TMD-based lateral epitaxial heterostructures with unique properties for various applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202006135 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!