Functional changes in the aging human brain have been previously reported using functional magnetic resonance imaging (fMRI). Earlier resting-state fMRI studies revealed an age-associated weakening of intra-system functional connectivity (FC) and age-associated strengthening of inter-system FC. However, the majority of such FC studies did not investigate the relationship between age and network amplitude, without which correlation-based measures of FC can be challenging to interpret. Consequently, the main aim of this study was to investigate how three primary measures of resting-state fMRI signal-network amplitude, network topography, and inter-network FC-are affected by healthy cognitive aging. We acquired resting-state fMRI data on a 4.7 T scanner for 105 healthy participants representing the entire adult lifespan (18-85 years of age). To study age differences in network structure, we combined ICA-based network decomposition with sparse graphical models. Older adults displayed lower blood-oxygen-level-dependent (BOLD) signal amplitude in all functional systems, with sensorimotor networks showing the largest age differences. Our age comparisons of network topography and inter-network FC demonstrated a substantial amount of age invariance in the brain's functional architecture. Despite architecture similarities, old adults displayed a loss of communication efficiency in our inter-network FC comparisons, driven primarily by the FC reduction in frontal and parietal association cortices. Together, our results provide a comprehensive overview of age effects on fMRI-based FC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00429-021-02226-7DOI Listing

Publication Analysis

Top Keywords

resting-state fmri
12
healthy cognitive
8
cognitive aging
8
functional connectivity
8
functional magnetic
8
magnetic resonance
8
resonance imaging
8
network topography
8
topography inter-network
8
age differences
8

Similar Publications

This study aimed to investigate the topological properties of brain functional networks in patients with tinnitus of varying durations. A total of 51 tinnitus patients (divided into recent-onset tinnitus (ROT) and persistent tinnitus (PT) groups) and 27 healthy controls (HC) were recruited. All participants underwent resting-state functional MRI and audiological assessments.

View Article and Find Full Text PDF

The origins of resting-state functional MRI (rsfMRI) signal fluctuations remain debated. Recent evidence shows coupling between global cortical rsfMRI signals and cerebrospinal fluid inflow in the fourth ventricle, increasing during sleep and decreasing with Alzheimer's disease (AD) progression, potentially reflecting brain clearance mechanisms. However, the existence of more complex brain-ventricle coupling modes and their relationship to cognitive decline remains unexplored.

View Article and Find Full Text PDF

Atypical face processing is commonly reported in autism. Its neural correlates have been explored extensively across single neuroimaging modalities within key regions of the face processing network, such as the fusiform gyrus (FFG). Nonetheless, it is poorly understood how variation in brain anatomy and function jointly impacts face processing and social functioning.

View Article and Find Full Text PDF

Background: Reading impairments, a common consequence of stroke-induced aphasia, significantly hinder life participation, affecting both functional and leisure activities. Traditional post-stroke rehabilitation strategies often show limited generalization beyond trained materials, underscoring the need for novel interventions targeting the underlying neural mechanisms.

Method: This study investigates the feasibility and potential effectiveness of real-time functional magnetic resonance imaging (fMRI) neurofeedback (NFB) intervention for reading deficits associated with stroke and aphasia.

View Article and Find Full Text PDF

Hyperphosphorylated tau accumulation is seen in the noradrenergic locus coeruleus from the earliest stages of Alzheimer's disease onwards and has been associated with symptoms of agitation. It is hypothesized that compensatory locus coeruleus-noradrenaline system overactivity and impaired emotion regulation could underlie agitation propensity, but to our knowledge this has not previously been investigated. A better understanding of the neurobiological underpinnings of agitation would help the development of targeted prevention and treatment strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!