Morroniside exerts a proosteogenic effect, which can prevent bone loss. However, the detailed mechanism underlying Morroniside-regulated bone formation is unclear. Morroniside can maintain cell homeostasis by promoting PI3K/Akt/mTOR signaling. The purpose of this study is to explore the significance of PI3K/Akt/mTOR signaling in Morroniside-regulated osteogenesis. The results showed that Morroniside promoted the activities of PI3K, Akt, and mTOR in osteoblast precursor MC3T3-E1. The differentiation of MC3T3-E1 to mature osteoblasts promoted by Morroniside can be reversed by the pharmacological inhibition of PI3K or mTOR. Importantly, in the presence of Morroniside, the osteoblast differentiation suppressed by PI3K inhibitor was reversed by mTOR overexpression. In vivo assays showed that in bone tissue of ovariectomized mice, Morroniside-enhanced osteoblast formation was reversed by the pharmacological inhibition of PI3K or mTOR. In conclusion, Morroniside can promote the osteogenesis through PI3K/Akt/mTOR signaling, which provides a novel clue for the strategy of Morroniside in treating osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bbb/zbaa010 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China.
Background: Diosmetin (DIOS) is a naturally abundant flavonoid and possesses various biological activities that hold promise as an anti-cancer agent. However, the anti-cancer activities and underlying mechanism of DIOS on cutaneous melanoma remain unclear.
Objective: This study seeks to explore the anti-tumor effect and mechanism of DIOS in cutaneous melanoma.
Mol Cell Proteomics
January 2025
Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg Germany; Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany. Electronic address:
Signaling pathways often convergence on transcription factors (TFs) and other DNA-binding proteins (DBPs) that regulate chromatin structure and gene expression, thereby governing a broad range of essential cellular functions. However, the repertoire of DBPs is incompletely understood even for the best-characterized pathways. Here, we optimized a strategy for the isolation of Proteins on Chromatin (iPOC) exploiting tagged nucleoside analogues to label the DNA and capture associated proteins, thus enabling the comprehensive, sensitive, and unbiased characterization of the DNA-bound proteome.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea. Electronic address:
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant of global concern due to its environmental presence,bioaccumulative potential and toxicological impacts. This review synthesizes current knowledge regarding PFOS exposure, bioaccumulation patterns and adverse health outcomes in human population. Analysis of worldwide biomonitoring data, and epidemiological studies reveals PFOS systemic effects, including immunological dysfunction (decreased vaccine response), developmental toxicity (reduced birth weight), hepatic metabolic disruption, potential carcinogenogenicity, and reproductive abnormalities.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy.
Environmental endocrine disruptor chemicals (EDCs) have raised significant concerns due to their potential adverse effects on human health, particularly on the central nervous system (CNS). This study provides a comparative analysis of the effects of 17-alpha ethinyl estradiol (EE2) and diethyl phthalate (DEP) on neuronal cell proliferation and neurotoxicity. Using differentiated SH-SY5Y human neuronal cells, we evaluated cell viability, microRNA (miRNA) regulation, and RNA expression following exposure to subtoxic concentrations of EE2 and DEP.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!