The Route of Sucrose Utilization by Affects Intracellular Polysaccharide Metabolism.

Front Microbiol

Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States.

Published: February 2021

converts extracellular sucrose (Suc) into exopolysaccharides (EPS) by glucosyl-transferase and fructosyl-transferase enzymes and internalizes Suc for fermentation through the phosphotransferase system (PTS). Here, we examined how altering the routes for sucrose utilization impacts intracellular polysaccharide [IPS; glycogen, ()] metabolism during carbohydrate starvation. Strain UA159 (WT), a mutant lacking all exo-enzymes for sucrose utilization (MMZ952), and a CcpA-deficient mutant () were cultured with sucrose or a combination of glucose and fructose, followed by carbohydrate starvation. At baseline (0h), and after 4 and 24h of starvation, cells were evaluated for mRNA levels of the operon, IPS storage, glucose-1-phosphate (G1P) concentrations, viability, and PTS activities. A pH drop assay was performed in the absence of carbohydrates at the baseline to measure acid production. We observed operon activation in response to starvation (<0.05) in all strains, however, such activation was significantly delayed and reduced in magnitude when EPS synthesis was involved (<0.05). Enhanced acidification and greater G1P concentrations were observed in the sucrose-treated group, but mostly in strains capable of producing EPS (<0.05). Importantly, only the WT exposed to sucrose was able to synthesize IPS during starvation. Contrary to CcpA-proficient strains, IPS was progressively degraded during starvation in , which also showed increased operon expression and greater PTS activities at baseline. Therefore, sucrose metabolism by secreted enzymes affects the capacity of in synthesizing IPS and converting it into organic acids, without necessarily inducing greater expression of the operon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884614PMC
http://dx.doi.org/10.3389/fmicb.2021.636684DOI Listing

Publication Analysis

Top Keywords

sucrose utilization
12
intracellular polysaccharide
8
carbohydrate starvation
8
route sucrose
4
utilization intracellular
4
polysaccharide metabolism
4
metabolism converts
4
converts extracellular
4
sucrose
4
extracellular sucrose
4

Similar Publications

Facilitated Channeling of Fixed Carbon and Energy into Chemicals in Artificial Phototrophic Communities.

J Am Chem Soc

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.

Light-driven CO biovalorization offers a promising route for coupling carbon mitigation with petrochemical replacement. Synthetic phototrophic communities that mimic lichens can reduce the metabolic burden with improved CO utilization. However, inefficient channeling of carbon and energy between species seriously hinders the collaborative CO-to-molecule route.

View Article and Find Full Text PDF

Polymyxin E (PME), a polymyxin antibiotic, serves as a final resort against antibiotic resistance. Nephrotoxicity is the primary concern when employing PME. To alleviate this issue, researchers have explored strategies including dosing adjustments and innovative formulations.

View Article and Find Full Text PDF

Morphological Comparisons of Adult Worker Bees Developed in Chinese and Italian Honey Bee Combs.

Insects

January 2025

Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.

The size of comb cells is a key factor influencing the body size of honey bee workers. Comb cells and the body size of Chinese honey bee workers are smaller than those of Italian honey bee workers. To increase the size of Chinese honey bee workers, this study used newly built combs from Chinese honey bee colonies (control group) and Italian honey bee colonies (treatment group).

View Article and Find Full Text PDF

Impact of Comb Cell Diameter on Nectar Evaporation Efficiency in Honey Bees.

Insects

January 2025

Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.

Honey bees transform nectar into honey through a combination of physical and chemical processes, with the physical process primarily involving the evaporation of excess water to concentrate the nectar. However, the factors affecting evaporation efficiency, such as evaporation duration, cell type, and bee species, remain incompletely understood. This study aimed to examine how these factors affect nectar evaporation efficiency during honey production.

View Article and Find Full Text PDF

[Efficient synthesis of polydatin by a two-enzyme coupled with one-pot method].

Sheng Wu Gong Cheng Xue Bao

January 2025

School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, Anhui, China.

Traditional Chinese medicine of has been utilized in China for thousands of years. Its primary active compound, polydatin, exhibits a variety of pharmacological effects including the regulation of glucose and lipid metabolism, suppression of cough and asthma, as well as antibacterial and anti-inflammatory properties. However, conventional methods for polydatin production are inadequate to satisfy the market demand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!