Background: Colorectal cancer (CRC) is a common digestive system malignancy. Ferroptosis, a new form of regulated cell death, plays a vital role in the pathogenesis and therapy of cancers.
Objective: We aimed to study the role of apatinib in ferroptosis of CRC cells and its potential mechanisms.
Materials And Methods: Human CRC HCT116 cells were exposed to apatinib. Cell viability was examined using a CCK-8 kit. The concentrations of intracellular iron and reactive oxygen species (ROS) were detected using kits. Additionally, Western blot analysis was used to determine the expression of ferroptosis-related proteins. Elongation of very long-chain fatty acids family member 6 (ELOVL6) was one of the targets of apatinib predicted by SwissTargetPrediction. Therefore, ELOVL6 expression was evaluated after treatment with apatinib. Subsequently, the effects of ELOVL6 overexpression on ferroptosis of HCT116 cells were investigated. Finally, STRING database was applied to predict the potential proteins interacting with ELOVL6, and co-immunoprecipitation (co-IP) assay was applied for confirmation.
Results: Results indicated that apatinib decreased cell viability and increased the contents of intracellular iron ROS. Moreover, significantly upregulated ACSL4 expression was observed, accompanied by notable downregulation of GPx4 and FTH1 expression after apatinib exposure. Furthermore, ELOVL6 expression was remarkably enhanced in HCT116 cells, which was dramatically inhibited under apatinib intervention. ELOVL6 overexpression reversed the effects of apatinib on cell viability and ferroptosis of HCT116 cells. Moreover, ACSL4, a vital regulator of ferroptosis, could interact with ELOVL6 directly, which was confirmed by the result of co-IP.
Conclusion: These findings demonstrated that apatinib promoted ferroptosis in CRC cells by targeting ELOVL6/ACSL4, providing a new mechanism support for apatinib application in the clinical treatment of CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884947 | PMC |
http://dx.doi.org/10.2147/CMAR.S274631 | DOI Listing |
F1000Res
January 2025
Department of Biochemistry, Kastubra Medical College Manipal, Maniapl Academy of Higher Education, Manipal, Karnataka, India.
Background: Colon cancer is the third most common cancer type worldwide. Novel alternative therapeutic anti-cancer drugs against colon cancer with less toxicity are to be explored . This study was aimed to explore the anti-proliferative and anti-migratory activity of various fractions of ethanolic leaf extract on human colon cancer cell lines (HCT-116) and to explore the potential molecular targets from the most potent plant extract fraction.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
The auxin-inducible degron (AID) system is widely used to study function of various proteins. The plant hormone auxin is used as an inducer in this system, which easily penetrates into the cells and causes proteasomal degradation of the protein of interest fused to a small degron tag. It is often assumed that as a plant hormone, auxin does not significantly affect physiology of animal cells.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo 11754 Egypt.
The vascular endothelial growth factor receptor is essential for the angiogenesis of cancer. Tumor propagation was effectively suppressed by inhibiting VEGFR-2 activity. As a result, the target quinoxaline-pyrazole hybrids were created in a way that closely resembled the structural characteristics of VEGFR-2 inhibitors.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University 34116 Istanbul, Turkey.
In this study, new 2-indolinone-indole hybrid compounds (4a-s) carrying a benzoyl moiety were synthesized and their cytotoxic effects were examined against pancreatic (MIA-PaCa-2) and colon (HT-29 and HCT-116) cancer cells by MTT assays. Most of the tested compounds exhibited a better inhibitory activity and safety profile than the reference standard sunitinib malate against MIA-PaCa-2 and HCT-116 cancer cells. Compound 4e displayed the greatest cytotoxic effect on HCT-116 cell with an IC value of 0.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Institute for Medicinal Plants Research "Dr. Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia.
Background/objectives: Scop. is traditionally used for treatment of various gastrointestinal ailments. In this study, we investigated the phytochemical profile and biological activities of leaves, bark and flowers extracts of Methods: Phytochemical analysis was performed using HPLC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!