Background: Acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy in children. It requires a long and rigorous course of chemotherapy treatments. 6-Mercaptopurine (6-MP) is one of the primary drugs used in chemotherapy. Unfortunately, its efficacy has been limited due to its insolubility, poor bioavailability and serious adverse effects. To overcome these drawbacks, we constructed 6-mercaptopurine (6-MP)-loaded nanomedicines (6-MPNs) with biodegradable poly(lactide-co-glycolide) (PLGA) to enhance the anticancer efficacy of 6-MP.
Methods: We prepared the 6-MPNs using a double-emulsion solvent evaporation method, characterizing them for the physicochemical properties. We then investigated the plasma, intestinal region and other organs in Sprague Dawley (SD) rats for pharmacokinetics. Additionally, we evaluated its anticancer efficacy in vitro on the human T leukemia cell line Jurkat and in vivo on the ALL model mice.
Results: The 6-MPNs were spherical in shape with uniform particle size and high encapsulation efficiency. The in vitro release profile showed that 6-MPNs exhibited a burst release that a sustained release phase then followed. The apoptosis assay demonstrated that 6-MPNs could improve the in vitro cytotoxicity in Jurkat cells. Pharmacokinetics profiles revealed that 6-MPNs had improved oral bioavailability. Tissue distribution experiments indicated that 6-MPNs increased the duodenum absorption of 6-MP, at the same time having a low accumulation of the toxic metabolites of 6-MP. The in vivo pharmacodynamics study revealed that 6-MPNs could prolong the survival time of the ALL model mice. The prepared 6-MPNs, therefore, have superior properties in terms of anticancer efficacy against ALL with reduced systemic toxicity.
Conclusion: Our nanomedicines provide a promising delivery strategy for 6-MP; they offer a simple preparation method and high significance for clinical translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886780 | PMC |
http://dx.doi.org/10.2147/IJN.S290466 | DOI Listing |
BI 1703880, a novel STimulator of INterferon Genes (STING) agonist, has demonstrated preclinical antitumor activity. As STING activation can upregulate programmed death ligand 1 and human leukocyte antigen in tumor cells, a combination of BI 1703880 and an anti-programmed cell death protein 1-antibody, such as ezabenlimab, may improve efficacy. This first-in-human phase Ia study (NCT05471856) is evaluating BI 1703880 plus ezabenlimab in patients with advanced solid tumors.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston. (B.C.-C., N.A.V.G., N.L.P., L.P.E., V.S.K.S., A.M.O., J.L., G.M., O.H., A.D., S.W.Y., C.A.I., K.C.O.M., S. Kotla, J.-i.A.).
Modulating immune function is a critical strategy in cancer and atherosclerosis treatments. For cancer, boosting or maintaining the immune system is crucial to prevent tumor growth. However, in vascular disease, mitigating immune responses can decrease inflammation and slow atherosclerosis progression.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China.
Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.
Purpose: Phytosome technology, an advanced lipid-based delivery system, offers a promising solution for enhancing the bioavailability and therapeutic efficacy of secondary metabolites, particularly in cancer treatment. These metabolites, such as flavonoids, terpenoids, and alkaloids, possess significant anticancer potential but are often limited by poor solubility and low absorption. This review aims to investigate how phytosome encapsulation improves the pharmacokinetic profiles and anticancer effectiveness of these bioactive compounds.
View Article and Find Full Text PDFCancer Manag Res
January 2025
School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China.
Background: Cancer immunotherapy is an advanced therapeutic approach that harnesses the body's immune system to target and eliminate tumor cells. Traditional Chinese medicine (TCM), with a history rooted in centuries of clinical practice, plays a crucial role in enhancing immune responses, alleviating cancer-related symptoms, and reducing the risks of infections and complications in cancer patients.
Methodology: This review systematically examines the current literature on TCM-based formulations in cancer immunotherapy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!