The WRF-ACI model configuration is used to investigate the scale dependency of aerosol-cloud interactions (ACI) across the "grey zone" scales for grid and subgrid-scale clouds. The impacts of ACI on weather are examined across regions in the eastern and western U. S. at 36, 12, 4, and 1 km grid spacing for short-term periods during the summer of 2006. ACI impacts are determined by comparing simulations with current climatological aerosol levels to simulations with aerosol levels reduced by 90%. The aerosol-cloud lifetime effect is found to be the dominant process leading to suppressed precipitation in regions of the eastern U.S., while regions in the western U. S. experience offsetting impacts on precipitation from the cloud lifetime effect and other effects that enhance precipitation. Generally, the cloud lifetime effect weakens with decreasing grid spacing due to a decrease in relative importance of autoconversion compared to accretion. Subgrid-scale ACI are dominant at 36 km, while grid-scale ACI are dominant at 4 and 1 km. At 12 km grid spacing, grid-scale and subgrid-scale ACI processes are comparable in magnitude and spatial coverage, but random perturbations in grid-scale-ACI impacts make the overall grid-scale-ACI impact appear muted. This competing behavior of grid and subgrid-scale clouds complicate the understanding of ACI at 12 km within the current WRF modeling framework. The work implies including subgrid-scale-cloud microphysics and ice/mixed phase cloud ACI processes may be necessary in weather and climate models to study ACI effectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886284 | PMC |
http://dx.doi.org/10.1175/JAS-D-19-0203.1 | DOI Listing |
J Chem Inf Model
December 2024
Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States.
Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Faculty of Computer Science, Dresden University of Technology, Dresden, Germany.
We show that the resolution-dependent loss of bimolecular reactions in spatiotemporal Reaction-Diffusion Master Equations (RDMEs) is in agreement with the mean-field Collins-Kimball (C-K) theory of diffusion-limited reaction kinetics. The RDME is a spatial generalization of the chemical master equation, which enables studying stochastic reaction dynamics in spatially heterogeneous systems. It uses a regular Cartesian grid to partition space into locally well-mixed reaction compartments and treats diffusion as a jump reaction between neighboring grid cells.
View Article and Find Full Text PDFInt J Concr Struct Mater
December 2024
Civil and Architectural Engineering Department, University of Miami, Coral Gables, FL 33146 USA.
The current provisions for development length in the ACI 440.11 code disregard the confinement effect provided by stirrups on the bond strength of longitudinal bars and require splice lengths that pose implementation challenges. Given the significant improvement in GFRP material properties, this study investigated the bond strength of sand-coated GFRP bars and proposed a new factor to include the effect of stirrup confinement on the bond-strength provisions.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel.
Nano-patterned magnetic materials have opened new venues for the investigation of strongly correlated phenomena including artificial spin-ice systems, geometric frustration, and magnetic monopoles, for technologically important applications such as reconfigurable ferromagnetism. With the advent of atomically thin 2D van der Waals (vdW) magnets, a pertinent question is whether such compounds could make their way into this realm where interactions can be tailored so that unconventional states of matter can be assessed. Here, it is shown that square islands of CrGeTe vdW ferromagnets distributed in a grid manifest antiferromagnetic correlations, essential to enable frustration resulting in an artificial spin-ice.
View Article and Find Full Text PDFElife
December 2024
Leloir Institute - IIBBA/CONICET, Buenos Aires, Argentina.
Entorhinal grid cells implement a spatial code with hexagonal periodicity, signaling the position of the animal within an environment. Grid maps of cells belonging to the same module share spacing and orientation, only differing in relative two-dimensional spatial phase, which could result from being part of a two-dimensional attractor guided by path integration. However, this architecture has the drawbacks of being complex to construct and rigid, path integration allowing for no deviations from the hexagonal pattern such as the ones observed under a variety of experimental manipulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!