Energy of a free Brownian particle coupled to thermal vacuum.

Sci Rep

Institute of Physics, University of Silesia, 41-500, Chorzów, Poland.

Published: February 2021

Experimentalists have come to temperatures very close to absolute zero at which physics that was once ordinary becomes extraordinary. In such a regime quantum effects and fluctuations start to play a dominant role. In this context we study the simplest open quantum system, namely, a free quantum Brownian particle coupled to thermal vacuum, i.e. thermostat in the limiting case of absolute zero temperature. We analyze the average energy [Formula: see text] of the particle from a weak to strong interaction strength c between the particle and thermal vacuum. The impact of various dissipation mechanisms is considered. In the weak coupling regime the energy tends to zero as [Formula: see text] while in the strong coupling regime it diverges to infinity as [Formula: see text]. We demonstrate it for selected examples of the dissipation mechanisms defined by the memory kernel [Formula: see text] of the Generalized Langevin Equation. We reveal how at a fixed value of c the energy E(c) depends on the dissipation model: one has to compare values of the derivative [Formula: see text] of the dissipation function [Formula: see text] at time [Formula: see text] or at the memory time [Formula: see text] which characterizes the degree of non-Markovianity of the Brownian particle dynamics. The impact of low temperature is also presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893074PMC
http://dx.doi.org/10.1038/s41598-021-83617-yDOI Listing

Publication Analysis

Top Keywords

[formula text]
32
brownian particle
12
thermal vacuum
12
particle coupled
8
coupled thermal
8
[formula
8
energy [formula
8
text]
8
dissipation mechanisms
8
coupling regime
8

Similar Publications

On analysis of phthalocyanine network through statistical method.

Sci Rep

December 2024

Department of Mathematical Sciences, Faculty of Science, Somali National University, Mogadishu Campus, Mogadishu, Somalia.

Phthalocyanine derivative nanostructures are highly organized organometallic structures that exhibit two-dimensional polymeric phthalocyanine frameworks. We analyze phthalocyanine using the Zagreb-type indices, which offer important insights into the topological characteristics of the molecular structure. Furthermore, we use Pearson correlation analysis to examine the degree of relationship between various structural features and qualities.

View Article and Find Full Text PDF

This paper introduces a class of insulin-glucose-glucocorticoid impulsive systems in the treatment of patients with diabetes to consider the effect of glucocorticoids. The existence and uniqueness of the positive periodic solution of the impulsive model at double fixed time is confirmed for type 1 diabetes mellitus (T1DM) using the [Formula: see text] function. Further, the global asymptotic stability of the positive periodic solution is achieved following Floquet multiplier theory and comparison principle.

View Article and Find Full Text PDF

It has been argued that realistic models of (singularity-free) black holes (BHs) embedded within an expanding Universe are coupled to the large-scale cosmological dynamics, with striking consequences, including pure cosmological growth of BH masses. In this pilot study, we examine the consequences of this growth for the stochastic gravitational wave background (SGWB) produced by inspiraling supermassive cosmologically coupled BHs. We show that the predicted SGWB amplitude is enhanced relative to the standard uncoupled case, while maintaining the [Formula: see text] frequency scaling of the spectral energy density.

View Article and Find Full Text PDF

This study presents an innovative methane gas sensor design based on anti-resonant hollow-core fiber (AR-HCF) technology, optimized for high-precision detection at 3.3[Formula: see text]. Our numerical analysis explores the geometric optimization of the AR-HCF's structural parameters, incorporating real-world component specifications.

View Article and Find Full Text PDF

A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!