Antagonizing the spindle assembly checkpoint silencing enhances paclitaxel and Navitoclax-mediated apoptosis with distinct mechanistic.

Sci Rep

CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Rua Central da Gandra 1317, Gandra, 4585-116, Paredes, Portugal.

Published: February 2021

Antimitotic drugs arrest cells in mitosis through chronic activation of the spindle assembly checkpoint (SAC), leading to cell death. However, drug-treated cancer cells can escape death by undergoing mitotic slippage, due to premature mitotic exit. Therefore, overcoming slippage issue is a promising chemotherapeutic strategy to improve the effectiveness of antimitotics. Here, we antagonized SAC silencing by knocking down the MAD2-binding protein p31, to delay mitotic slippage, and tracked cancer cells treated with the antimitotic drug paclitaxel, over 3 days live-cell time-lapse analysis. We found that in the absence of p31, the duration of mitotic block was increased in cells challenged with nanomolar concentrations of paclitaxel, leading to an additive effects in terms of cell death which was predominantly anticipated during the first mitosis. As accumulation of an apoptotic signal was suggested to prevent mitotic slippage, when we challenged p31-depleted mitotic-arrested cells with the apoptosis potentiator Navitoclax (previously called ABT-263), cell fate was shifted to accelerated post-mitotic death. We conclude that inhibition of SAC silencing is critical for enhancing the lethality of antimitotic drugs as well as that of therapeutic apoptosis-inducing small molecules, with distinct mechanisms. The study highlights the potential of p31 as a target for antimitotic therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893169PMC
http://dx.doi.org/10.1038/s41598-021-83743-7DOI Listing

Publication Analysis

Top Keywords

mitotic slippage
12
spindle assembly
8
assembly checkpoint
8
antimitotic drugs
8
cell death
8
cancer cells
8
sac silencing
8
cells
5
mitotic
5
antagonizing spindle
4

Similar Publications

SUMOylation, the modification of proteins with a small ubiquitin-like modifier (SUMO), is known to regulate various cellular events, including cell division. This process is dynamic, with its status depending on the balance between SUMOylation and deSUMOylation. While the regulation of cell division by sentrin-specific protease (SENP) family proteins through deSUMOylation has been investigated, the role of another deSUMOylase, deSUMOylating isopeptidase 1 (DESI1), remains unknown.

View Article and Find Full Text PDF

TNK2 is a ubiquitously expressed nonreceptor-type tyrosine kinase. TNK2 participates in tumorigenesis, and TNK2 activation has been found in various cancers; therefore, TNK2 is a promising target for cancer chemotherapy. While the TNK2 inhibitor XMD16-5 is highly selective, it inhibits cytokinesis at higher concentrations by targeting Aurora B kinase, a key enzyme for cell division.

View Article and Find Full Text PDF

Targeting Mitotic Exit in Malignant Cells.

Methods Mol Biol

November 2024

Faculty of Medicine, Department of Medicine I, Medical Center, University of Freiburg, Freiburg, Germany.

In order to sustain genomic stability by correct DNA replication and mitosis and thus avoid malignant transformation of cells, the cell cycle is a strictly regulated process. Aberrant cell cycle regulation and defects in mitosis in malignant cells are targets of various cancer therapies. Cancer cells may survive antimitotic treatment due to mitotic slippage with a residual activity of the ubiquitin ligase anaphase-promoting complex (APC/C) and a continuous slow ubiquitin-proteasome-dependent cyclin B-degradation leading to mitotic exit.

View Article and Find Full Text PDF

Regulated start-codon selection has the potential to reshape the proteome through the differential production of upstream open reading frames, canonical proteins, and alternative translational isoforms. However, conditions under which start codon selection is altered remain poorly defined. Here, using transcriptome-wide translation-initiation-site profiling, we reveal a global increase in the stringency of start-codon selection during mammalian mitosis.

View Article and Find Full Text PDF

Fludioxonil, an antifungal agent used as a pesticide, leaves a measurable residue in fruits and vegetables. It has been identified to cause endocrine disruption, interrupt normal development, and cause various diseases such as cancers. In this study, fludioxonil was examined for its effects on the development and metastasis of breast cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!