Modern biomedical research and preclinical pharmaceutical development rely heavily on the phenotyping of small vertebrate models for various diseases prior to human testing. In this article, we demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae. This enables multispectral imaging of the zebrafish body and internal organs from different viewing perspectives. Moreover, we develop a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation of basic morphological characteristics and advanced combinations of metrics. With its contactless nature and advantages in speed and automation, our acoustofluidic rotational tweezing system has the potential to be a valuable asset in numerous fields, especially for developmental biology, small molecule screening in biochemistry, and pre-clinical drug development in pharmacology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892888 | PMC |
http://dx.doi.org/10.1038/s41467-021-21373-3 | DOI Listing |
Adv Mater Technol
September 2024
Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA.
Tweezers based on optical, electric, magnetic, and acoustic fields have shown great potential for contactless object manipulation. However, current tweezers designed for manipulating millimeter-sized objects such as droplets, particles, and small animals, exhibit limitations in translation resolution, range, and path complexity. Here, we introduce a novel acoustic vortex tweezers system, which leverages a unique airborne acoustic vortex end effector integrated with a three degree-of-freedom (DoF) linear motion stage, for enabling contactless, multi-mode, programmable manipulation of millimeter-sized objects.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
Contactless microscale tweezers are highly effective tools for manipulating, patterning, and assembling bioparticles. However, current tweezers are limited in their ability to comprehensively manipulate bioparticles, providing only partial control over the six fundamental motions (three translational and three rotational motions). This study presents a joint subarray acoustic tweezers platform that leverages acoustic radiation force and viscous torque to control the six fundamental motions of single bioparticles.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK.
Cytopathology, crucial in disease diagnosis, commonly uses microscopic slides to scrutinize cellular abnormalities. However, processing high volumes of samples often results in numerous negative diagnoses, consuming significant time and resources in healthcare. To address this challenge, a surface acoustic wave-enhanced multi-view acoustofluidic rotation cytometry (MARC) technique is developed for pre-cytopathological screening.
View Article and Find Full Text PDFLab Chip
June 2024
School of Chemical Engineering and Technology, Xi'an JiaoTong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, P.R. China.
Manipulating objects with acoustics has been developed for hundreds of years since Chladni patterns in gaseous environments were exhibited. In recent decades, acoustic manipulation in microfluidics, known as acoustofluidics, has rapidly thrived and many sophisticated technologies were born. However, the basic background motion of particles under acoustic excitation is usually neglected and the classical Chladni patterns haven't been reproduced in an aqueous environment.
View Article and Find Full Text PDFAnalyst
May 2024
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
Extracellular vesicles (EVs) originating from cancer cells incorporate various critical biomolecules that can aid in early cancer diagnosis. However, the rapid analysis of these micro vesicles remains challenging due to their nano-scale size and overlapping dimensions, hindering sufficient capture in terms of quantity and purity. In this study, an acoustofluidic device was developed to enhance the yield of immune-captured EVs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!