DAF-12 is nematode-specific nuclear receptor that has been proposed to govern development of the infectious stage of parasitic species, including Here, we identified a parasite-specific coactivator, called DAF-12 interacting protein-1 (DIP-1), that is required for DAF-12 ligand-dependent transcriptional activity. DIP-1 is found only in spp. and selectively interacts with DAF-12 through an atypical receptor binding motif. Using CRISPR/Cas9-directed mutagenesis, we demonstrate that DAF-12 is required for the requisite developmental arrest and the ligand-dependent reactivation of infectious infective third-stage larvae, and that these effects require the DIP-1 coactivator. These studies reveal the existence of a distinct nuclear receptor/coactivator signaling pathway that governs parasite development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923533PMC
http://dx.doi.org/10.1073/pnas.2021864118DOI Listing

Publication Analysis

Top Keywords

nuclear receptor/coactivator
8
signaling pathway
8
daf-12
5
identification nuclear
4
receptor/coactivator developmental
4
developmental signaling
4
pathway nematode
4
nematode parasite
4
parasite daf-12
4
daf-12 nematode-specific
4

Similar Publications

Background: Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness.

View Article and Find Full Text PDF

Background: Long non-coding RNA (lncRNA) zinc finger protein 667-antisense RNA 1 () is closely related to the advancement of a variety of cancers, but its functional role in colorectal cancer remains unclear. This study was designed to explore the function and molecular mechanisms of lncRNA in colorectal cancer.

Methods: Reverse transcriptase real-time quantitative polymerase chain reaction (RT-qPCR) was used for the detection of and proline-rich nuclear receptor co-activator protein 2 () expression level.

View Article and Find Full Text PDF

Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension.

Science

January 2025

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.

Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.

View Article and Find Full Text PDF

CXCR3 inhibition ameliorates mitochondrial function to restrict oxidative damage via NCOA4-mediated ferritinophagy and improves the gut microbiota in mice.

Free Radic Biol Med

January 2025

College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China. Electronic address:

Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy contributes to maintain intracellular iron balance by regulating ferritin degradation, which is essential for redox homeostasis. CXC-motif chemokine receptor 3 (CXCR3) is involved in the regulation of oxidative stress and autophagy. However, its role in modulating intestinal oxidative damage through ferritinophagy and the gut microbiota remains unclear.

View Article and Find Full Text PDF

Background: Low-grade glioma (LGG) is a primary brain tumor with relatively low malignancy. NCOA4 is a key regulator of ferritinophagy-related processes and is involved in the occurrence and development of many cancers. However, the role of NCOA4 in LGG remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!