Astrocytes are glial cells with numerous fine processes which are important for the functions of the central nervous system. The activation of β-adrenoceptors induces process formation of astrocytes via cyclic AMP (cAMP) signaling. However, the role of α-adrenoceptors in the astrocyte morphology has not been elucidated. Here, we examined it by using cultured astrocytes from neonatal rat spinal cords and cortices. Exposure of these cells to noradrenaline and the β-adrenoceptor agonist isoproterenol increased intracellular cAMP levels and induced the formation of processes. Noradrenaline-induced process formation was enhanced with the α-adrenoceptor antagonist prazosin and α-adrenoceptor antagonist atipamezole. Atipamezole also enhanced noradrenaline-induced cAMP elevation. Isoproterenol-induced process formation was not inhibited by the α-adrenoceptor agonist phenylephrine but was inhibited by the α-adrenoceptor agonist dexmedetomidine. Dexmedetomidine also inhibited process formation induced by the adenylate cyclase activator forskolin and the membrane-permeable cAMP analog dibutyryl-cAMP. Moreover, dexmedetomidine inhibited cAMP-independent process formation induced by adenosine or the Rho-associated kinase inhibitor Y27632. In the presence of propranolol, noradrenaline inhibited Y27632-induced process formation, which was abolished by prazosin or atipamezole. These results demonstrate that α-adrenoceptors inhibit both cAMP-dependent and -independent astrocytic process formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphs.2020.12.005 | DOI Listing |
Alzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: The TREAT-AD centers aim to improve Alzheimer's Disease (AD) research by offering free, high-quality tools and technologies. Lyn is a tyrosine kinase that belongs to the Src family kinases. The expression of Lyn and its activity have been implicated in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Focusing on novel AD treatments, the TREAT-AD centers offer an array of free research tools, shared via the AD Knowledge Portal in a Target Enablement Package (TEP). This abstract showcases the research conducted by the IUSM-Purdue TREAT-AD Center, specifically focusing on Targeting class-II PI3K's as a potential breakthrough in AD therapy. Endocytosis within the brain encompasses diverse pathways for internalizing extracellular cargoes and receptors into cells.
View Article and Find Full Text PDFBackground: Memory is influenced by epigenetic mechanisms that regulate gene expression. Histone acetyltransferases (HATs), and histone deacetylases (HDACs), are two competitive enzymes regulating histone acetylation. Histone acetylation is reduced in Alzheimer's disease (AD) brains, and evidence has shown a synergistic regulation of HDACs and HATs activities.
View Article and Find Full Text PDFBackground: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).
View Article and Find Full Text PDFAmyloid β (Aβ) has been confirmed as a therapeutic target in AD by recent findings in Phase 3 trials with anti-Aβ antibodies. Modulators of γ-secretase (GSMs) are an emerging complementary approach to target amyloid. GSMs "modulate" the interaction between γ-secretase and amyloid precursor protein (APP), leading to a reduced production of long, amyloidogenic Aβ42 and Aβ40 and to concomitantly increased levels of the shorter, non amyloidogenic Aβ37 and Aβ38.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!