Type of feeding during early life influences growth trajectory and metabolic risk at later ages. Modifications in infant formula composition have led to evaluate their effects on growth and energetic efficiency (EE) compared with breast-feeding. Main goal was to analyse type of feeding potential effects during first months of life, plus its EE, on growth patterns in healthy formula fed (standard infant formula (SF) vs. experimental infant formula enriched with bioactive nutrients (EF)) and breastfed (BF) infants participating in the COGNIS RCT (http://www.ClinicalTrials.gov, Identifier: NCT02094547) up to 18 months of age. Infants follow-up to 18 months of age (n 141) fed with a SF (n 48), EF(n 56), or BF (n 37), were assessed for growth parameters using WHO standards. Growth velocity (GV) and catch-up were calculated to identify growth patterns. EE of breast milk/infant formula was also estimated. Infants' growth at 6 months showed higher length and lower head circumference gains in SF and EF infants than BF infants. Both weight-for-length and weight-for-age catch-up growth showed significant differences in formula fed groups compared with the BF. No significant differences in GV or catch-up were found at 6-12 and 12-18 months. Regarding EE, infant formula groups showed significantly lower weight and length gains/g of milk protein, and higher weight and length gains/g of milk lipids, than the BF infants. GV during first 6 months, which may be influenced by feeding, seems to be the main predictor of subsequent growth trajectory. Breast-feeding may have positive effects on growth programming due to its nutrients' EE.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S000711452100057XDOI Listing

Publication Analysis

Top Keywords

infant formula
16
growth patterns
12
growth
11
patterns breast
8
breast milk/infant
8
formula
8
milk/infant formula
8
energetic efficiency
8
infants months
8
months life
8

Similar Publications

Many infants consume both human milk and infant formula (mixed-fed); however, few studies have investigated how mixed feeding affects the gut microbiome composition and metabolic profiles compared to exclusive breastfeeding or formula feeding. Herein, how delivery mode and early nutrition affect the microbiome and metabolome of 6-week-old infants in the STRONG Kids2 cohort was investigated. Fecal samples were collected from exclusively breastfed (BF; n = 25), formula-fed (FF; n = 25) or mixed-fed (MF; n = 25) participants.

View Article and Find Full Text PDF

is a foodborne pathogen characterized by its robust stress tolerance and ability to form biofilms, which facilitates its survival in powdered infant formula (PIF) processing environments for prolonged periods. Gamma-aminobutyric acid (GABA) is a kind of non-protein amino acid that acts as an osmoprotectant. This study aimed to elucidate the effects of the gene on the survival of , GABA accumulation, and biofilm formation under desiccation, osmotic stress, and acid exposure.

View Article and Find Full Text PDF

The gut microbiome modulates the anti-seizure effects of the ketogenic diet, but how specific dietary formulations differentially modify the gut microbiome in ways that impact seizure outcome is poorly understood. We find that medical ketogenic infant formulas vary in macronutrient ratio, fat source, and fiber content and differentially promote resistance to 6-Hz seizures in mice. Dietary fiber, rather than fat ratio or source, drives substantial metagenomic shifts in a model human infant microbial community.

View Article and Find Full Text PDF

Dental Fluorosis (DF) is one of the negative outcomes of excessive fluoride (F) intake through food sources. This systematic review aimed to compare F content in two important food sources for infants, Mother's Milk (MoM) and Infant Formula (IF), and then evaluate the risk of DF related to F in those two types of food. For this purpose, 181 studies were initially found by searching the relevant keywords in widely recognized databases, including Google Scholar, Scopus, Science Direct, and PubMed.

View Article and Find Full Text PDF

An Overview of Early-Life Gut Microbiota Modulation Strategies.

Ann Nutr Metab

January 2025

Department of Paediatrics, Medical University of Warsaw, Warsaw, Poland.

Background: The gut microbiota, or microbiome, is essential for human health. Early-life factors such as delivery mode, diet, and antibiotic use shape its composition, impacting both short- and long-term health outcomes. Dysbiosis, or alterations in the gut microbiota, is linked to conditions such as allergies, asthma, obesity, diabetes, inflammatory bowel disease, and necrotizing enterocolitis in preterm infants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!