https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=33602284&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 336022842021051420240806
1479-58761912021Feb18Journal of translational medicineJ Transl MedTranslational stem cell therapy: vascularized skin grafts in skin repair and regeneration.83838310.1186/s12967-021-02752-2The skin is made up of a plethora of cells arranged in multiple layers with complex and intricate vascular networks, creating a dynamic microenvironment of cells-to-matrix interactions. With limited donor sites, engineered skin substitute has been in high demand for many therapeutic purposes. Over the years, remarkable progress has occurred in the skin tissue-engineering field to develop skin grafts highly similar to native tissue. However, the major hurdle to successful engraftment is the incorporation of functional vasculature to provide essential nutrients and oxygen supply to the embedded cells. Limitations of traditional tissue engineering have driven the rapid development of vascularized skin tissue production, leading to new technologies such as 3D bioprinting, nano-fabrication and micro-patterning using hydrogel based-scaffold. In particular, the key hope to bioprinting would be the generation of interconnected functional vessels, coupled with the addition of specific cell types to mimic the biological and architectural complexity of the native skin environment. Additionally, stem cells have been gaining interest due to their highly regenerative potential and participation in wound healing. This review briefly summarizes the current cell therapies used in skin regeneration with a focus on the importance of vascularization and recent progress in 3D fabrication approaches to generate vascularized network in the skin tissue graft.PhuaQian HuaQHDisease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.HanHua AlexanderHADisease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.SohBoon-SengBS0000-0001-9134-3081Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. bssoh@imcb.a-star.edu.sg.Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore. bssoh@imcb.a-star.edu.sg.engJournal ArticleResearch Support, Non-U.S. Gov'tReview20210218
EnglandJ Transl Med1011907411479-5876IMBioprintingCell- and Tissue-Based TherapyRegenerationSkinTissue EngineeringTissue ScaffoldsWound Healing3D bioprintingEngineered skin graftSkin regenerationStem cellsVascularizationThe authors declare no conflict of interest.
2020127202121120212195422021220602021515602021218epublish33602284PMC789101610.1186/s12967-021-02752-210.1186/s12967-021-02752-2Chen L, Xing Q, Zhai Q, Tahtinen M, Zhou F, Chen L, et al. Pre-vascularization enhances therapeutic effects of human mesenchymal stem cell sheets in full thickness skin wound repair. Theranostics. 2017;7(1):117–131. doi: 10.7150/thno.17031.10.7150/thno.17031PMC519689028042321Rodero MP, Khosrotehrani K. Skin wound healing modulation by macrophages. Int J Clin Exp Pathol. 2010;3(7):643–653.PMC293338420830235Wong VW, Gurtner GC. Tissue engineering for the management of chronic wounds: current concepts and future perspectives. Exp Dermatol. 2012;21(10):729–734. doi: 10.1111/j.1600-0625.2012.01542.x.10.1111/j.1600-0625.2012.01542.x22742728MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445(7130):874–880. doi: 10.1038/nature05664.10.1038/nature0566417314974Oualla-Bachiri W, Fernández-González A, Quiñones-Vico MI, Arias-Santiago S. From grafts to human bioengineered vascularized skin substitutes. Int J Mol Sci. 2020;21(21):8197. doi: 10.3390/ijms21218197.10.3390/ijms21218197PMC766299933147759Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, et al. Advances in skin regeneration using tissue engineering. Int J Mol Sci. 2017;18(4):789. doi: 10.3390/ijms18040789.10.3390/ijms18040789PMC541237328387714Varkey M, Ding J, Tredget EE. Advances in skin substitutes-potential of tissue engineered skin for facilitating anti-fibrotic healing. J Funct Biomater. 2015;6(3):547–563. doi: 10.3390/jfb6030547.10.3390/jfb6030547PMC459867026184327Hendrickx B, Vranckx JJ, Luttun A. Cell-based vascularization strategies for skin tissue engineering. Tissue Eng Part B Rev. 2011;17(1):13–24. doi: 10.1089/ten.teb.2010.0315.10.1089/ten.teb.2010.031520954829Sahota PS, Burn JL, Heaton M, Freedlander E, Suvarna SK, Brown NJ, et al. Development of a reconstructed human skin model for angiogenesis. Wound Repair Regen. 2003;11(4):275–284. doi: 10.1046/j.1524-475X.2003.11407.x.10.1046/j.1524-475X.2003.11407.x12846915Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells. 2008;26(10):2713–2723. doi: 10.1634/stemcells.2008-0031.10.1634/stemcells.2008-003118617689Vermette M, Trottier V, Ménard V, Saint-Pierre L, Roy A, Fradette J. Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells. Biomaterials. 2007;28(18):2850–2860. doi: 10.1016/j.biomaterials.2007.02.030.10.1016/j.biomaterials.2007.02.03017374391Miyazaki H, Tsunoi Y, Akagi T, Sato S, Akashi M, Saitoh D. A novel strategy to engineer pre-vascularized 3-dimensional skin substitutes to achieve efficient, functional engraftment. Sci Rep. 2019;9(1):7797. doi: 10.1038/s41598-019-44113-6.10.1038/s41598-019-44113-6PMC653454831127144Heimbach DM, Warden GD, Luterman A, Jordan MH, Ozobia N, Ryan CM, et al. Multicenter postapproval clinical trial of Integra dermal regeneration template for burn treatment. J Burn Care Rehabil. 2003;24(1):42–48. doi: 10.1097/00004630-200301000-00009.10.1097/00004630-200301000-0000912543990Silverstein G. Dermal regeneration template in the surgical management of diabetic foot ulcers: a series of five cases. J Foot Ankle Surg. 2006;45(1):28–33. doi: 10.1053/j.jfas.2005.10.005.10.1053/j.jfas.2005.10.00516399556Violas P, Abid A, Darodes P, Galinier P, de Gauzy JS, Cahuzac J-P. Integra artificial skin in the management of severe tissue defects, including bone exposure, in injured children. J Pediatr Orthop B. 2005;14(5):381–384. doi: 10.1097/01202412-200509000-00013.10.1097/01202412-200509000-0001316093952Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7(43):229–258. doi: 10.1098/rsif.2009.0403.10.1098/rsif.2009.0403PMC284261619864266Debels H, Hamdi M, Abberton K, Morrison W. Dermal matrices and bioengineered skin substitutes: a critical review of current options. Plast Reconstr Surg Glob Open. 2015;3(1):e284. doi: 10.1097/GOX.0000000000000219.10.1097/GOX.0000000000000219PMC432338825674365Bello YM, Falabella AF, Eaglstein WH. Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol. 2001;2(5):305–313. doi: 10.2165/00128071-200102050-00005.10.2165/00128071-200102050-0000511721649Horch RE, Kopp J, Kneser U, Beier J, Bach AD. Tissue engineering of cultured skin substitutes. J Cell Mol Med. 2005;9(3):592–608. doi: 10.1111/j.1582-4934.2005.tb00491.x.10.1111/j.1582-4934.2005.tb00491.xPMC674132016202208Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D, OASIS Venus Ulcer Study Group Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg. 2005;41(5):837–843. doi: 10.1016/j.jvs.2005.01.042.10.1016/j.jvs.2005.01.04215886669Boyce ST, Lalley AL. Tissue engineering of skin and regenerative medicine for wound care. Burns Trauma. 2018;6:4. doi: 10.1186/s41038-017-0103-y.10.1186/s41038-017-0103-yPMC604060930009192Min JH, Yun IS, Lew DH, Roh TS, Lee WJ. The use of matriderm and autologous skin graft in the treatment of full thickness skin defects. Arch Plast Surg. 2014;41(4):330–336. doi: 10.5999/aps.2014.41.4.330.10.5999/aps.2014.41.4.330PMC411369025075353Pape SA, Byrne PO. Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J Burn Care Rehabil. 2000;21(4):390. doi: 10.1097/00004630-200021040-00021.10.1097/00004630-200021040-0002110935823Hanft JR, Surprenant MS. Healing of chronic foot ulcers in diabetic patients treated with a human fibroblast-derived dermis. J Foot Ankle Surg. 2002;41(5):291–299. doi: 10.1016/S1067-2516(02)80047-3.10.1016/S1067-2516(02)80047-312400712Marston WA, Hanft J, Norwood P, Pollak R, Dermagraft Diabetic Foot Ulcer Study Group The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care. 2003;26(6):1701–1705. doi: 10.2337/diacare.26.6.1701.10.2337/diacare.26.6.170112766097Clark RAF, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol. 2007;127(5):1018–1029. doi: 10.1038/sj.jid.5700715.10.1038/sj.jid.570071517435787Metcalfe AD, Ferguson MWJ. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface. 2007;4(14):413–437. doi: 10.1098/rsif.2006.0179.10.1098/rsif.2006.0179PMC237341117251138Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol. 2005;23(4):403–412. doi: 10.1016/j.clindermatol.2004.07.023.10.1016/j.clindermatol.2004.07.02316023936Blot SI, Monstrey SJ, Hoste EA, Carsin H, et al. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns 2000;26:379–387. Burns. 2001;27(4):418–419. doi: 10.1016/S0305-4179(00)00123-6.10.1016/S0305-4179(00)00123-610751706Gobet R, Raghunath M, Altermatt S, Meuli-Simmen C, Benathan M, Dietl A, et al. Efficacy of cultured epithelial autografts in pediatric burns and reconstructive surgery. Surgery. 1997;121(6):654–661. doi: 10.1016/S0039-6060(97)90054-4.10.1016/S0039-6060(97)90054-49186466Limat A, Mauri D, Hunziker T. Successful treatment of chronic leg ulcers with epidermal equivalents generated from cultured autologous outer root sheath cells. J Invest Dermatol. 1996;107(1):128–135. doi: 10.1111/1523-1747.ep12298415.10.1111/1523-1747.ep122984158752851Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care (New Rochelle) 2014;3(10):647–661. doi: 10.1089/wound.2013.0517.10.1089/wound.2013.0517PMC418392025302139Vailhé B, Vittet D, Feige JJ. In vitro models of vasculogenesis and angiogenesis. Lab Invest. 2001;81(4):439–452. doi: 10.1038/labinvest.3780252.10.1038/labinvest.378025211304563Auger FA, Gibot L, Lacroix D. The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng. 2013;15:177–200. doi: 10.1146/annurev-bioeng-071812-152428.10.1146/annurev-bioeng-071812-15242823642245Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407(6801):242–248. doi: 10.1038/35025215.10.1038/3502521511001067Moon JJ, West JL. Vascularization of engineered tissues: approaches to promote angio-genesis in biomaterials. Curr Top Med Chem. 2008;8(4):300–310. doi: 10.2174/156802608783790983.10.2174/156802608783790983PMC392921018393893Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9(6):685–693. doi: 10.1038/nm0603-685.10.1038/nm0603-68512778167Ucuzian AA, Gassman AA, East AT, Greisler HP. Molecular mediators of angiogenesis. J Burn Care Res. 2010;31(1):158–175. doi: 10.1097/BCR.0b013e3181c7ed82.10.1097/BCR.0b013e3181c7ed82PMC281879420061852Bosseboeuf E, Raimondi C. Signalling, metabolic pathways and iron homeostasis in endothelial cells in health, atherosclerosis and Alzheimer’s disease. Cells. 2020;9(9):2055. doi: 10.3390/cells9092055.10.3390/cells9092055PMC756420532911833Cantelmo AR, Brajic A, Carmeliet P. Endothelial metabolism driving angiogenesis: emerging concepts and principles. Cancer J. 2015;21(4):244–249. doi: 10.1097/PPO.0000000000000133.10.1097/PPO.000000000000013326222074Potente M, Carmeliet P. The link between angiogenesis and endothelial metabolism. Annu Rev Physiol. 2017;79(1):43–66. doi: 10.1146/annurev-physiol-021115-105134.10.1146/annurev-physiol-021115-10513427992732De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154(3):651–663. doi: 10.1016/j.cell.2013.06.037.10.1016/j.cell.2013.06.03723911327Li X, Sun X, Carmeliet P. Hallmarks of endothelial cell metabolism in health and disease. Cell Metab. 2019;30(3):414–433. doi: 10.1016/j.cmet.2019.08.011.10.1016/j.cmet.2019.08.01131484054Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110(10):1364–1390. doi: 10.1161/CIRCRESAHA.111.243972.10.1161/CIRCRESAHA.111.243972PMC336557622581922Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309. doi: 10.1016/j.molcel.2010.09.022.10.1016/j.molcel.2010.09.022PMC314350820965423Cano Sanchez M, Lancel S, Boulanger E, Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants (Basel) 2018;7(8):98. doi: 10.3390/antiox7080098.10.3390/antiox7080098PMC611592630042332Demyanenko IA, Zakharova VV, Ilyinskaya OP, Vasilieva TV, Fedorov AV, Manskikh VN, et al. Mitochondria-targeted antioxidant SkQ1 improves dermal wound healing in genetically diabetic mice. Oxid Med Cell Longev. 2017;2017:6408278. doi: 10.1155/2017/6408278.10.1155/2017/6408278PMC551851728761623Comino-Sanz IM, López-Franco MD, Castro B, Pancorbo-Hidalgo PL. Antioxidant dressing therapy versus standard wound care in chronic wounds (the REOX study): study protocol for a randomized controlled trial. Trials. 2020;21(1):505. doi: 10.1186/s13063-020-04445-5.10.1186/s13063-020-04445-5PMC727805432513260Truskey GA. Endothelial cell vascular smooth muscle cell co-culture assay for high throughput screening assays for discovery of anti-angiogenesis agents and other therapeutic molecules. Int J High Throughput Screen. 2010;2010(1):171–181. doi: 10.2147/IJHTS.S13459.10.2147/IJHTS.S13459PMC303027021278926Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-oncology. 2005;7(4):452–464. doi: 10.1215/S1152851705000232.10.1215/S1152851705000232PMC187172716212810Nomi M, Atala A, Coppi PD, Soker S. Principals of neovascularization for tissue engineering. Mol Aspects Med. 2002;23(6):463–483. doi: 10.1016/S0098-2997(02)00008-0.10.1016/S0098-2997(02)00008-012385748Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26(8):434–441. doi: 10.1016/j.tibtech.2008.04.009.10.1016/j.tibtech.2008.04.00918585808Black AF, Berthod F, L’heureux N, Germain L, Auger FA. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 1998;12(13):1331–1340. doi: 10.1096/fasebj.12.13.1331.10.1096/fasebj.12.13.13319761776Manek S, Terenghi G, Shurey C, Nishikawa H, Green CJ, Polak JM. Neovascularisation precedes neural changes in the rat groin skin flap following denervation: an immunohistochemical study. Br J Plast Surg. 1993;46(1):48–55. doi: 10.1016/0007-1226(93)90065-J.10.1016/0007-1226(93)90065-J7679305Ko HCH, Milthorpe BK, McFarland CD. Engineering thick tissues–the vascularisation problem. Eur Cell Mater. 2007;14:1–18. doi: 10.22203/eCM.v014a01.10.22203/eCM.v014a0117654452Snapyan M, Lemasson M, Brill MS, Blais M, Massouh M, Ninkovic J, et al. Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J Neurosci. 2009;29(13):4172–4188. doi: 10.1523/JNEUROSCI.4956-08.2009.10.1523/JNEUROSCI.4956-08.2009PMC666536219339612Kaur A, Midha S, Giri S, Mohanty S. Functional skin grafts: where biomaterials meet stem cells. Stem Cells Intern. 2019;1(2019):1–20. doi: 10.1155/2019/1286054.10.1155/2019/1286054PMC663652131354835Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O’Sullivan JF, et al. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol. 2015;17(8):994–1003. doi: 10.1038/ncb3205.10.1038/ncb3205PMC456685726214132Stebbins MJ, Gastfriend BD, Canfield SG, Lee M-S, Richards D, Faubion MG, et al. Human pluripotent stem cell-derived brain pericyte-like cells induce blood–brain barrier properties. Sci Adv. 2019;5(3):eaau7375. doi: 10.1126/sciadv.aau7375.10.1126/sciadv.aau7375PMC641595830891496Khaki M, Salmanian AH, Abtahi H, Ganji A, Mosayebi G. Mesenchymal stem cells differentiate to endothelial cells using recombinant vascular endothelial growth factor-A. Rep Biochem Mol Biol. 2018;6(2):144–150.PMC594035629761109Pankajakshan D, Agrawal DK. Mesenchymal stem cell paracrine factors in vascular repair and regeneration. J Biomed Technol Res. 2014;1(1).PMC558920028890954Sharifi S, Hajipour MJ, Gould L, Mahmoudi M. Nanomedicine in healing chronic wounds: opportunities and challenges. Mol Pharmaceutics. 2020;acs.molpharmaceut.0c00346.32519875Naskar A, Kim K-S. Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics. 2020;12(6):499. doi: 10.3390/pharmaceutics12060499.10.3390/pharmaceutics12060499PMC735651232486142Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Rahbar Saadat Y, Zununi Vahed S, et al. The use of nanomaterials in tissue engineering for cartilage regeneration; current approaches and future perspectives. Int J Mol Sci. 2020;21(2):536. doi: 10.3390/ijms21020536.10.3390/ijms21020536PMC701422731947685Przekora A. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: can we reconstruct functional skin tissue in vitro? Cells. 2020;9(7):1622. doi: 10.3390/cells9071622.10.3390/cells9071622PMC740751232640572Abaci HE, Guo Z, Coffman A, Gillette B, Lee W-H, Sia SK, et al. Human skin constructs with spatially controlled vasculature using primary and iPSC-derived endothelial cells. Adv Healthc Mater. 2016;5(14):1800–1807. doi: 10.1002/adhm.201500936.10.1002/adhm.201500936PMC503108127333469Sun T, Jackson S, Haycock JW, MacNeil S. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol. 2006;122(3):372–381. doi: 10.1016/j.jbiotec.2005.12.021.10.1016/j.jbiotec.2005.12.02116446003Yu JR, Navarro J, Coburn JC, Mahadik B, Molnar J, Holmes JH, et al. Current and future perspectives on skin tissue engineering: key features of biomedical research, translational assessment, and clinical application. Adv Healthc Mater. 2019;8(5):e1801471. doi: 10.1002/adhm.201801471.10.1002/adhm.201801471PMC1029082730707508Kim BS, Gao G, Kim JY, Cho D-W. 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin. Adv Healthc Mater. 2019;8(7):e1801019. doi: 10.1002/adhm.201801019.10.1002/adhm.20180101930358939Ng WL, Wang S, Yeong WY, Naing MW. Skin bioprinting: impending reality or fantasy? Trends Biotechnol. 2016;34(9):689–699. doi: 10.1016/j.tibtech.2016.04.006.10.1016/j.tibtech.2016.04.00627167724Klumpp D, Rudisile M, Kühnle RI, Hess A, Bitto FF, Arkudas A, et al. Three-dimensional vascularization of electrospun PCL/collagen-blend nanofibrous scaffolds in vivo. J Biomed Mater Res A. 2012;100(9):2302–2311.22508579Wray LS, Rnjak-Kovacina J, Mandal BB, Schmidt DF, Gil ES, Kaplan DL. A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials. 2012;33(36):9214–9224. doi: 10.1016/j.biomaterials.2012.09.017.10.1016/j.biomaterials.2012.09.017PMC347940423036961Myers DR, Sakurai Y, Tran R, Ahn B, Hardy ET, Mannino R, et al. Endothelialized microfluidics for studying microvascular interactions in hematologic diseases. J Vis Exp. 2012;(64).PMC347128222760254Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915–946. doi: 10.1039/C7BM00765E.10.1039/C7BM00765EPMC643947729492503Tomasina C, Bodet T, Mota C, Moroni L, Camarero-Espinosa S. Bioprinting vasculature: materials, cells and emergent techniques. Materials (Basel) 2019;12(17):2701. doi: 10.3390/ma12172701.10.3390/ma12172701PMC674757331450791Baltazar T, Merola J, Catarino C, Xie CB, Kirkiles-Smith NC, Lee V, et al. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells. Tissue Eng Part A. 2020;26(5–6):227–238. doi: 10.1089/ten.tea.2019.0201.10.1089/ten.tea.2019.0201PMC747639431672103Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–785. doi: 10.1038/nbt.2958.10.1038/nbt.295825093879Yan W-C, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JYH, et al. 3D bioprinting of skin tissue: from pre-processing to final product evaluation. Adv Drug Deliv Rev. 2018;132:270–295. doi: 10.1016/j.addr.2018.07.016.10.1016/j.addr.2018.07.01630055210Sarker MD, Naghieh S, Sharma NK, Chen X. 3D biofabrication of vascular networks for tissue regeneration: a report on recent advances. J Pharm Anal. 2018;8(5):277–296. doi: 10.1016/j.jpha.2018.08.005.10.1016/j.jpha.2018.08.005PMC619050730345141Xu T, Zhao W, Zhu J-M, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34(1):130–139. doi: 10.1016/j.biomaterials.2012.09.035.10.1016/j.biomaterials.2012.09.03523063369Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials. 2011;32(35):9218–9230. doi: 10.1016/j.biomaterials.2011.08.071.10.1016/j.biomaterials.2011.08.07121911255Luo Y, Lode A, Gelinsky M. Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. Adv Healthc Mater. 2013;2(6):777–783. doi: 10.1002/adhm.201200303.10.1002/adhm.20120030323184455Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods. 2014;20(6):473–484. doi: 10.1089/ten.tec.2013.0335.10.1089/ten.tec.2013.0335PMC402484424188635Kim BS, Lee J-S, Gao G, Cho D-W. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication. 2017;9(2):025034. doi: 10.1088/1758-5090/aa71c8.10.1088/1758-5090/aa71c828586316Varkey M, Visscher DO, van Zuijlen PPM, Atala A, Yoo JJ. Skin bioprinting: the future of burn wound reconstruction? Burns Trauma. 2019;7:4. doi: 10.1186/s41038-019-0142-7.10.1186/s41038-019-0142-7PMC637156830805375Huang C-Y, Liu C-L, Ting C-Y, Chiu Y-T, Cheng Y-C, Nicholson MW, et al. Human iPSC banking: barriers and opportunities. J Biomed Sci. 2019;26(1):87. doi: 10.1186/s12929-019-0578-x.10.1186/s12929-019-0578-xPMC681940331660969