Icing is a severe problem for many technical systems such as aircraft or systems for high-voltage power transmission and distribution. Ice nucleation in water droplets is affected by several influencing factors like impurities or the liquid temperature, which have been widely investigated. However, although an electric field affects nucleation, this influence has been far less investigated and is still not completely understood. The present work is focused on the influence of high alternating electric fields on ice nucleation in sessile water droplets, which is examined for a systematic variation of the electric field frequency and strength. All experiments used to determine the influence of a single parameter like the electric field strength or frequency are performed with the same set of droplets to ensure well-defined conditions and a high repeatability of the procedure. For each parameter variation a large number of nucleation events is observed and analyzed. Droplet survival curves and the nucleation site density are used to analyze the experiments and to determine the influence of the electric field on ice nucleation. Especially for high electric field strengths, a significant influence on nucleation is observed. Some droplets freeze earlier, which leads to a higher median nucleation temperature. On the other hand, the lowest temperature required to freeze all droplets is almost constant compared to the reference case without an electric field. It is shown that not all droplets are affected by the electric field in the same way, but the influence of the electric field on ice nucleation is rather of singular nature. In addition, the frequency of the applied electric field has an impact on the nucleation behavior. The present experimental data quantitatively demonstrate the effect of an electric field on ice nucleation and improves our understanding of heterogeneous nucleation of supercooled water subjected to high alternating electric fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.103.012801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!