Two-dimensional free surface flows in Hele-Shaw configurations are a fertile ground for exploring nonlinear physics. Since Saffman and Taylor's work on linear instability of fluid-fluid interfaces, significant effort has been expended to determining the physics and forcing that set the linear growth rate. However, linear stability does not always imply nonlinear stability. We demonstrate how the combination of a radial and an azimuthal external magnetic field can manipulate the interfacial shape of a linearly unstable ferrofluid droplet in a Hele-Shaw configuration. We show that weakly nonlinear theory can be used to tune the initial unstable growth. Then, nonlinearity arrests the instability and leads to a permanent deformed droplet shape. Specifically, we show that the deformed droplet can be set into motion with a predictable rotation speed, demonstrating nonlinear traveling waves on the fluid-fluid interface. The most linearly unstable wave number and the combined strength of the applied external magnetic fields determine the traveling wave shape, which can be asymmetric.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.103.013103 | DOI Listing |
Zhonghua Yi Xue Za Zhi
February 2025
Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.
A total of 7 patients with type 1 infratentorial superficial siderosis(iSS-1)in Memory Clinic at Huashan Hospital, Fudan University from March 2019 to March 2023 were respectively collected to analyze the clinical characteristics and treatment, and followed up for 12 months. There were 7 patients, 2 males and 5 females, aged 56 (49-60) years. The 4 patients who underwent cognitive assessment had varying degree of cognitive impairment, with 2 patients exhibiting severe executive function impairment.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, PR China. Electronic address:
Magnetic nanoparticles effectively target drug delivery, contrast agents, biosensors, and more. Urchin-like magnetic nanoparticles (UMN) with abundant spike-like structures exhibit superior magneto-mechanical force to destroy tumor cells compared with other shapes of magnetic nanoparticles. However, when cell contents are released from tumor cells induced by magneto-mechanical force, they can act on surrounding tumor cells to facilitate tumor development.
View Article and Find Full Text PDFGynecol Oncol
January 2025
Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. Electronic address:
Objectives: To assess the predictive value of magnetic resonance imaging for vesicovaginal fistula development in cervical cancer patients with bladder invasion treated with definitive chemoradiotherapy.
Methods: A retrospective review was conducted of the medical records of 43 cervical cancer patients with bladder invasion between 1999 and 2015. Bladder invasion was confirmed through magnetic resonance imaging (scores ≥3) or cystoscopic findings, with or without biopsy.
Neuroimage Clin
January 2025
Backgrounds/objective: Deep brain stimulation (DBS) has proved the viability of alleviating depression symptoms by stimulating deep reward-related nuclei. This study aims to investigate the abnormal connectivity profiles among superficial, intermediate, and deep brain regions within the reward circuit in major depressive disorder (MDD) and therefore provides references for identifying potential superficial cortical targets for non-invasive neuromodulation.
Methods: Resting-state functional magnetic resonance imaging data were collected from a cohort of depression patients (N = 52) and demographically matched healthy controls (N = 60).
Sci Rep
January 2025
Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!