Low thermal conductivity of polymers, which is one of the considerable drawbacks of commonly used composite structures, has been the focus of many researchers aiming to achieve high-performance polymer-based nanocomposites through the inclusion of highly thermally conductive fillers inside the polymer matrices. Thus, in the present study, a multiscale scheme using nonequilibrium molecular dynamics and the finite element method is developed to explore the impact of different nanosized fillers (carbon-nitride and graphene) on the effective thermal conductivity of polyethylene-based nanocomposites. We show that the thermal conductivity of amorphous polyethylene at room temperature using the reactive bond order interatomic potential is nearly 0.36±0.05W/mK. Also, the atomistic results predict that, compared to the C_{3}N and graphene nanosheets, the C_{2}N nanofilm presents a much stronger interfacial thermal conductance with polyethylene. Furthermore, the results indicate that the effective thermal conductivity values of C_{2}N-polyethylene, C_{3}N-polyethylene, and graphene-polyethylene nanocomposite, at constant volume fractions of 1%, are about 0.47, 0.56, and 0.74W/mK, respectively. In other words, the results of our models reveal that the thermal conductivity of fillers is the dominant factor that defines the effective thermal conductivity of nanocomposites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.103.013310 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!