Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Percolation theory can be used to describe the structural properties of complex networks using the generating function formulation. This mapping assumes that the network is locally treelike and does not contain short-range loops between neighbors. In this paper we use the generating function formulation to examine clustered networks that contain simple cycles and cliques of any order. We use the natural generalization to the Molloy-Reed criterion for these networks to describe their critical properties and derive an approximate analytical description of the size of the giant component, providing solutions for Poisson and power-law networks. We find that networks comprising larger simple cycles behave increasingly more treelike. Conversely, clustering composed of larger cliques increasingly deviate from the treelike solution, although the behavior is strongly dependent on the degree-assortativity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.103.012313 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!