The mountain birch [Betula pubescens var. pumila (L.)] forest in the Subarctic is periodically exposed to insect outbreaks, which are expected to intensify due to climate change. To mitigate abiotic and biotic stresses, plants have evolved chemical defenses, including volatile organic compounds (VOCs) and non-volatile specialized compounds (NVSCs). Constitutive and induced production of these compounds, however, are poorly studied in Subarctic populations of mountain birch. Here, we assessed the joint effects of insect herbivory, elevation and season on foliar VOC emissions and NVSC contents of mountain birch. The VOCs were sampled in situ by an enclosure technique and analyzed by gas chromatography-mass spectrometry. NVSCs were analyzed by liquid chromatography-mass spectrometry using an untargeted approach. At low elevation, experimental herbivory by winter moth larvae (Operophtera brumata) increased emissions of monoterpenes and homoterpenes over the 3-week feeding period, and sesquiterpenes and green leaf volatiles at the end of the feeding period. At high elevation, however, herbivory augmented only homoterpene emissions. The more pronounced herbivory effects at low elevation were likely due to higher herbivory intensity. Of the individual compounds, linalool, ocimene, 4,8-dimethylnona-1,3,7-triene, 2-methyl butanenitrile and benzyl nitrile were among the most responsive compounds in herbivory treatments. Herbivory also altered foliar NVSC profiles at both low and high elevations, with the most responsive compounds likely belonging to fatty acyl glycosides and terpene glycosides. Additionally, VOC emissions from non-infested branches were higher at high than low elevation, particularly during the early season, which was mainly driven by phenological differences. The VOC emissions varied substantially over the season, largely reflecting the seasonal variations in temperature and light levels. Our results suggest that if insect herbivory pressure continues to rise in the mountain birch forest with ongoing climate change, it will significantly increase VOC emissions with important consequences for local trophic interactions and climate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190950PMC
http://dx.doi.org/10.1093/treephys/tpab023DOI Listing

Publication Analysis

Top Keywords

mountain birch
20
voc emissions
16
low elevation
12
specialized compounds
8
pubescens var
8
var pumila
8
winter moth
8
moth larvae
8
larvae operophtera
8
operophtera brumata
8

Similar Publications

We elucidated the changes of soil microbial biomass and community structure in soil profiles under four typical land use types (farmland, grassland, secondary forest and plantation)and across five soil layers (0-10, 10-20, 20-30, 30-40, 40-50 cm) in the northern mountainous region of Hebei Province. We measured soil microbial biomass by phospholipid fatty acid (PLFA) method, and investigated the effects of land use and soil depth on soil microbial biomass and community structure by variance analysis, correlation analysis and redundancy analysis. The results showed that soil water content, bulk density, and organic carbon content of farmland differed significantly from other land use types.

View Article and Find Full Text PDF

Long-term effects of thinning on soil organic carbon fractions and carbon pool management indices in secondary forests of heavily burned areas.

J Environ Manage

December 2024

School of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China. Electronic address:

Despite decades of recovery, soil carbon in heavily burned areas has failed to reach pre-fire levels. It is unclear whether stand management practices can promote soil organic carbon accumulation at such sites. This study evaluated the changes in soil labile organic carbon (LOC) fractions (including dissolved organic carbon (DOC), microbial biomass carbon (MBC), and easily oxidizable organic carbon (EOC)) and the carbon pool management index (CPMI) after the thinning of a heavily burned area in the Daxing'an Mountains and selected sample plots.

View Article and Find Full Text PDF

The objective of present review is to provide a scientific overview of sugarcane as a potential feedstock for biofuel and use of genome editing approach for improvement of industrial and agronomical traits in sugarcane. Sugarcane, a perennial tropical grass with a high biomass index, is a promising feedstock for bioethanol production, and its bagasse, rich in lignocellulosic material, serves as an ideal feedstock for producing second-generation bioethanol. To improve the conversion of sugarcane biomass into biofuels, developing varieties with improved biomass degradability and high biomass and sucrose content is essential.

View Article and Find Full Text PDF

To understand the microbial diversity and community composition within the main constructive tree species, Picea crassifolia, Betula platyphylla, and Pinus tabuliformis, in Helan Mountain and their response to changes in soil physicochemical factors, a high throughput sequencing technology was used to analyze the bacterial and fungal diversity and community structure. RDA (Redundancy Analysis) and Pearson correlation analysis were used to explore the influence of soil physicochemical factors on microbial community construction, and co-occurrence network analysis was conducted on the microbial communities. The results showed that the fungal and bacterial diversity was highest in B.

View Article and Find Full Text PDF

Different responses of soil bacterial community to plant-plant interactions under organic-inorganic fertilizers affect seedling establishment during subalpine forest succession.

Front Microbiol

October 2024

CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.

Introduction: Rhizosphere bacterial community as a valuable indicator of soil quality and function, has been widespread studied. However, little knowledge is about the response of bacterial communities to plant-plant interaction and different fertilizers during secondary forest succession.

Methods: We conducted a field pot experiment applying organic and inorganic fertilizers to monocultures and mixed cultures of dominant plant species from mid- to late-successional stages (, , and ), and investigated the responses of plant growth and rhizosphere bacterial communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!