. In this study, Monte Carlo (MC) simulations were done to relate the dose-response of the film to that in water. The effect of backscattering materials (PMMA, lead, polystyrene, and air) was investigated on its influence on film density for radionuclides including Am-241, Tc-99m, I-131, Cs-137.. A BEAMnrc MC simulation was designed to score a phase-space file (PSF) below the container of the radionuclide under consideration to use as an input file for the subsequent DOSXYZnrc MC simulation. The geometry of the container holding the radionuclide was built using the component modules available in BEAMnrc. BEAMDP was used to investigate the container effect on the radionuclide spectrum as well as the fluence. The DOSXYZnrc simulation produced the absorbed dose in XR-QA2 and RT-QA2 Gafchromicfilms. The DOSXYZnrc simulations were repeated for the Gafchromicfilm now replaced with water to get the absorbed dose in water. From these results, conversion factors for the dose in water to the film dose for the different radionuclides, Am-241, Tc-99m, I-131, and Cs-137 were obtained. The actual film dose was calculated using the specific gamma exposure constant (Γ) at a distance of 50 cm for a point source approximation. From the BEAMnrc simulations, the particle fluence was extracted from PSFs to correct for the fluence at 0.1 cm below the sources from the fluence 50 cm away since the inverse square law will not apply to finite-size sources. The absorbed dose profiles in the film were compared to the absorbed dose profiles from the MC simulations.. A fitting function based on the neutron depletion model fits the optical density versus absorbed film dose data well and can be used as a calibration tool to obtain the film dose from its optical density. Lead as a backscatter material results in a higher optical density change but a lower absorbed dose. The XR-QA2 Gafchromicfilm is more sensitive than the RT-QA2 Gafchromicfilm, showing a more responsive optical density (OD) change in the energy range of radionuclides used in this study. Conversion factors were determined to convert the dose in water to the dose in Gafchromicfilm. The Am-241 and I-131 simulated absorbed dose in the film to dose in water does not fluctuate as much as the simulated absorbed dose in film and water when using Tc-99m and Cs-137. Validation was shown for the comparison of the film and MC simulation absorbed dose profiles.. MC BEAMnrc simulations are useful to simulate radionuclides and their containers. BEAMDP extracted energy spectra showed that the radionuclide containers produced a Compton effect on the energy spectra and added filtration on the lower spectral photon components. Extracted fluence ratios from PSFs were used to calculate the absorbed dose value at 0.1 cm distance from the source. By using the fit function, the dose in the film can be determined for known optical density values. The effect of the backscatter materials showed that the XR-QA2 Gafchromicfilm results in higher optical density values than the RT-QA2 Gafchromicfilm. The absorbed dose in both the films is comparable but not for a radionuclide such as Am-241 with an activity of 74MBq. The lead backscatter material showed to be the most prominent in optical density enhancement, and the air equivalent material was the least prominent. The XR-QA2 Gafchromicfilm is the most sensitive and will be the best option if working with low energies. The absorbed dose in the XR-QA2 Gafchromicfilm also showed a good comparison to the absorbed dose in water for the Am-241 radionuclide with an activity of 74MBq. The absorbed dose in the films compares well to the MC simulated doses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/2057-1976/abe7c3 | DOI Listing |
Dentomaxillofac Radiol
January 2025
Assist. Prof. Dr, Selcuk University Faculty of Medicine, Department of Radiation Oncology, Konya, 42130, Turkiye.
Objectives: Due to the increasing use of cone-beam computed tomography (CBCT) in dentistry and considering the effects of radiation on radiosensitive organs, the aim of this study was to investigate the effect of shielding on absorbed dose of eyes, thyroid and breasts in scans conducted with different parameters using two different fields of view (FOV).
Methods: Dose measurements were calculated on a tissue-equivalent female phantom by repeating each scanning parameter three times and placing at least two thermoluminescent dosimeters (TLD) on each organ, with the averages then taken. The same CBCT scans were performed in two different FOV with shielding including thyroid collar, radiation safety glasses and lead apron and without shielding.
Drug Des Devel Ther
January 2025
The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China.
Background: Givinostat, a potent histone deacetylase (HDAC) inhibitor, is promising for the treatment of relapsed leukemia and myeloma.
Purpose: This study aimed to develop and verify a quick assay for the measurement of givinostat concentration using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) with eliglustat as the internal standard (IS), establishing a basic pharmacokinetic profile for its pre-clinical application and metabolic stability in vitro.
Methods: Sample preparation was performed via protein precipitation using acetonitrile.
J Pharm Sci
January 2025
Center of Clinical Pharmacology, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, China. Electronic address:
CZ1S injection is a novel, extended-release local anaesthetic formulation of ropivacaine, classified as a type 2.2 new drug, with potential for post-operative analgesia by subcutaneous infiltration and peripheral nerve blockade. This study aimed to validate the superior properties of CZ1S over ropivacaine hydrochloride injection and to evaluate the safety, tolerability, pharmacokinetic (PK) and pharmacodynamic (PD) profiles of a single dose of brachial plexus block with CZ1S in healthy Chinese adults.
View Article and Find Full Text PDFPhotochem Photobiol Sci
January 2025
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Experimental Nuclear Physics Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Egypt; Cyclotron Facility, Egyptian Atomic Energy Authority, Egypt.
Neutron and gamma-ray shielding design for a 30Ci (1.11TBq) Am-Be irradiation facility is studied using MCNP5 Monte Carlo simulation code. The study focuses on the optimization of the shielding layers of the previously planned neutron irradiation facility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!