Identification of thermostable and alkaline xylanases from different fungal and bacterial species have gained an interest for the researchers because of its biotechnological relevance in many industries, such as pulp, paper, and bioethanol. In this study, we have identified and characterized xylanases from the genome of the thermophilic fungus of Aspergillus fumigatus by in silico analysis. Genome data mining revealed that the A fumigatus genome has six xylanase genes that belong to GH10, GH11, GH43 glycoside hydrolase families. In general, most of the bacterial and fungal GH11 xylanases are alkaline, and GH10 xylanases are acidic; however, we found that one identified xylanase from A fumigatus that belongs to the GH10 family is alkaline while the rest are acidic. Moreover, physicochemical properties also stated that most of the xylanases identified have lower molecular weight except one that belongs to the GH43 family. Structure prediction by homology modelling gave optimized structures of the xylanases. It suggests that GH10 family structure models adapt (β∕α) 8 barrel type, GH11 homology models adapt β-jelly type, and the GH43 family has a fivefold β-propeller type structure. Molecular docking of identified xylanases with xylan revealed that GH11 xylanases have strong interaction (-9.6 kcal/mol) with xylan than the GH10 (-8.5 and -9.3 kcal/mol) and GH43 (-8.8 kcal/mol). We used the machine learning approach based TAXyl server to predict the thermostability of the xylanases. It revealed that two GH10 xylanases and one GH11 xylanase are thermo-active up to 75ᵒC. We have explored the physiochemical properties responsible for maintaining thermostability for bacterial and fungal GH10 and GH11 xylanases by comparing crystal structures. All the analyzed parameters specified that GH10 xylanases from both the fungi and bacteria are more thermostable due to higher hydrogen bonds, salt bridges, and helical content.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2021.107451DOI Listing

Publication Analysis

Top Keywords

xylanases
13
gh11 xylanases
12
gh10 xylanases
12
xylanases genome
8
aspergillus fumigatus
8
gh10
8
gh10 gh11
8
bacterial fungal
8
gh10 family
8
gh43 family
8

Similar Publications

Using maize plants expressing an apoplast targeted Aspergillus niger ferulic acid esterase (FAEA), with FAEA driven by a Lolium multiflorum senescence enhanced promoter (LmSee1), we extended measurements of FAEA activity to late-stage senescing plants and measured the stability of FAEA activity following stover storage. The impact of FAEA expression on cell wall hydroxycinnamic acid levels and arabinoxylan (AX) cross-links, and on the levels of cell wall sugars, acetyl bromide lignin and sugar release following saccharification by a cocktail of cellulases and xylanases, was assessed during plant development to full leaf senescence. These were determined in both individual internodes and in combined leaves and combined internodes of FAEA expressing and control partner plants.

View Article and Find Full Text PDF

Whole genome analysis, detoxification of ochratoxin a and physiological characterization of a novel MM35 isolated from soil.

Front Microbiol

December 2024

College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, China.

Ochratoxin A (OTA) is a significant global contaminant that poses severe challenges to food safety and public health. This study aims to isolate the OTA-degrated probiotics and evaluate genetic and biological characteristic. Here, The degradation rate of a new strain named MM35 isolated from soil was the highest (87.

View Article and Find Full Text PDF

The thermostability and catalytic activity of GH11 xylanase XynASP from JOP 1030-1 were improved by systematically engineering the cord region. Ultimately, mutant DSM4 was developed through iterative combinations of mutations. Compared to the wild-type XynASP, DSM4 showed a 130.

View Article and Find Full Text PDF

Lignocellulolytic enzymes isolation from mangrove-derived organisms has many industrial advantages due to their efficiency in dealing with extreme and challenging conditions, such as high temperatures and salt concentrations. This study aimed to isolate fungal enzyme producers from mangrove soil in Thailand to produce lignocellulolytic enzymes (carboxymethyl cellulase: CMCase, xylanase, and laccase) and to characterize these enzymes to support industrial applications. Forty-eight fungi were isolated from the mangrove samples, and their enzyme-producing capabilities were assessed using primary and secondary screening methods.

View Article and Find Full Text PDF

Introduction: China is rich in straw resources. The utilization of straw in the cultivation of edible fungi partially resolves the resource conflicts between mushroom cultivation and forest industry and also contributes to environmental protection.

Methods: In this study, based on the technology of replacing wood by grass, the straw formula for mycelial culture of was optimized with Simplex-lattice method commonly used in mixture design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!